Advertisement

Contraction Principle

  • P. V. SubrahmanyamEmail author
Chapter
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)

Abstract

The contraction mapping principle proved independently by Banach [1] and Cacciopoli [7] is a fundamental fixed point theorem, with an elementary proof. This theorem has a wide spectrum of applications and is a natural choice in approximating solutions to nonlinear problems. According to Rall [18], the applications of the contraction principle would fill volumes and Bollabos [4] calls it a doyen of fixed point theorems. Charmed by both the simplicity and utility of this theorem, many authors have generalized it in diverse directions. This chapter samples a few of these.

References

  1. 1.
    Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 3, 133–181 (1922)CrossRefGoogle Scholar
  2. 2.
    Baranga, A.: The contraction principle as a particular case of Kleene’s fixed point theorem. Discret. Math. 98, 75–79 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bessaga, C.: On the converse of Banach fixed point principle. Colloq. Math. 7, 41–43 (1959)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bollabos, B.: Linear Analysis: An Introductory Course. Cambridge University, Cambridge (1999)Google Scholar
  5. 5.
    Borwein, J.M.: Completeness and the contraction principle. Proc. Am. Math. Soc. 87, 246–250 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, D., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–469 (1969)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cacciopoli, R.: Un teorema generale sullesistenzadi elementi uniti in una transformazione funzionale. Rend. Accad. Lincei 6(11), 749–799 (1930)Google Scholar
  8. 8.
    Dugundji, J.: Topology. Allyn and Bacon Inc., Boston (1966)Google Scholar
  9. 9.
    Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hu, T.K.: On a fixed point theorem for metric spaces. Am. Math. Mon. 74, 436–437 (1967)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jachymski, J.: A short proof of the converse to the contraction principle and some related results. Topol. Methods Nonlinear Anal. 15, 179–186 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jungck, G.: Commuting mappings and fixed points. Am. Math. Mon. 83, 261–263 (1976)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)Google Scholar
  14. 14.
    Kupka, I.: Topological conditions for the existence of fixed points. Math. Slovaca 48, 315–321 (1998)Google Scholar
  15. 15.
    Nadler, S.B.: Multi-valued contracting mappings. Pac. J. Math. 30, 475–488 (1969)Google Scholar
  16. 16.
    Palais, R.S.: A simple proof of the Banach contraction principle. J. Fixed Point Theory Appl. 2, 221–223 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rakotch, E.: A note on contractive mappings. Proc. Am. Math. Soc. 13, 459–465 (1962)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rall, L.B.: Computational Solution of Nonlinear Operator Equations. Wiley, New York (1969)Google Scholar
  19. 19.
    Subrahmanyam, P.V.: Fixed points and completeness. Monat. Math. 80, 325–330 (1975)CrossRefGoogle Scholar
  20. 20.
    Tan, K.K.: Fixed point theorems for nonexpansive mappings. Pac. J. Math. 41, 829–842 (1972)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations