Fixed Points and Order

  • P. V. SubrahmanyamEmail author
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)


This chapter deals with fixed points of mappings on partially ordered sets (vide Definition  1.1.10) under diverse hypotheses.


  1. 1.
    Abian, A.: Fixed point theorems of the mappings of partially ordered sets. Rend. Circ. Mat. Palermo 20, 139–142 (1971)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abian, A.: A fixed point theorem equivalent to the axiom of choice. Arch. Math. Log. 25, 173–174 (1985)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andres, J., Pastor, K., Snyrychova, P.: Simple fixed point theorems on linear continua. Cubo 10, 27–43 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Blair, C., Roth, A.E.: An extension and simple proof of a constrained lattice fixed point theorem. Algebra Universalis 9, 131–132 (1979)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bourbaki, N.: Sur le theoreme de Zorn. Arch. Math. 2, 434–437 (1949–1950)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chitra, A., Subrahmanyam, P.V.: Remarks on a nonlinear complementarity problem. J. Optim. Theory Appl. 53, 297–302 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Davis, A.: A characterization of complete lattices. Pac. J. Math. 5, 311–319 (1955)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc., Englewood Cliffs (1964)Google Scholar
  9. 9.
    Fujimoto, T.: Nonlinear complementarity problems in a function space. SIAM J. Control Optim. 18, 621–623 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kelley, J.L.: General Topology. Springer, Berlin (1975)zbMATHGoogle Scholar
  11. 11.
    Knaster, B.: Un theoreme sur les functions d’ensembles. Ann. Soc. Polon. Math. 5, 133–134 (1927–1928)Google Scholar
  12. 12.
    Merrifield, K., Stein, J.D.: Common fixed points of two isotone maps on a complete lattice. Czechoslov. Math. J. 49(124), 849–866 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Moroianu, M.: On a theorem of Bourbaki. Rend. Circ. Math. Palermo 20, 139–142 (1971)CrossRefGoogle Scholar
  14. 14.
    Roth, A.E.: A lattice fixed-point theorem with constraints. Bull. Am. Math. Soc. 81, 136–138 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schäfer, U.: An existence theorem for a parabolic differential equation in \(\ell ^\infty (A)\) based on the Tarski fixed point theorem. Demonstr. Math. 30, 461–464 (1997)Google Scholar
  16. 16.
    Stein, J.D.: Fixed points of inequality preserving maps in complete lattices. Czechoslov. Math. J. 49(124), 35–43 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Stein, J.D.: A systematic generalization procedure for fixed point theorems. Rocky Mt. J. Math. 30, 735–754 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tarski, A.: A lattice theoretical fix point theorem and its applications. Pac. J. Math. 5, 285–309 (1955)CrossRefGoogle Scholar
  19. 19.
    Zermelo, E.: Neuer Beweis fur die Moglichkeit einer Wohlordnung. Math. Ann. 15, 107–128 (1908)zbMATHGoogle Scholar
  20. 20.
    Zorn, M.: A remark on method in transfinite algebra. Bull. Am. Math. Soc. 41, 667–670 (1935)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations