Advertisement

Schauder’s Fixed Point Theorem and Allied Theorems

  • P. V. Subrahmanyam
Chapter
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)

Abstract

Attempts to extend Brouwer’s fixed point theorem to infinite dimensional spaces culminated in Schauder’s fixed point theorem [20]. The need for such an extension arose because existence of solutions to nonlinear equations, especially nonlinear integral and differential equations can be formulated as fixed point problems in function-spaces. This chapter discusses Schauder’s and allied fixed point theorems with their applications including the existence of Haar integral, invariant mean and Banach limit.

References

  1. 1.
    Banas, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker, Inc., New York (1980)zbMATHGoogle Scholar
  2. 2.
    Browder, F.E.: The fixed point theory of multivalued mappings in topological vector spaces. Math. Ann. 177, 283–301 (1968)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cauty, R.: Solution du probleme de point fixe de Schauder. Fundam. Math. 170, 231–246 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Darbo, G.: Punti uniti in transformazioxi a condominio non compatio. Rend. Semin. Mat. Univ. Padova 24, 84–92 (1955)zbMATHGoogle Scholar
  5. 5.
    Day, M.M.: Amenable semigroups. Ill. J. Math. 1, 509–544 (1957)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dugundji, J., Granas, A.: J. Math. Anal. Appl. 97, 301–305 (1983)Google Scholar
  7. 7.
    Fan, Ky.: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. N.A.S 38, 121–126 (1952)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170–174 (1952)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hahn, S.: A fixed point theorem. Math. Syst. Theory 1, 55–57 (1968)CrossRefGoogle Scholar
  10. 10.
    Kakutani, S.: Two fixed point theorems concerning bicompact convex sets. Proc. Imp. Acad. Jpn. 14, 242–245 (1938)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, 457–459 (1941)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kitamura, Y., Kusano, T.: Oscillation of first-order nonlinear differential equations with deviating arguments. Proc. Am. Math. Soc. 78, 64–68 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia of Mathematics and Its Application. Cambridge University Press, Cambridge (1990)Google Scholar
  14. 14.
    Markov, A.A.: Quelques theorems sur les ensembles abeliens. C.R. (Dokl.) Acad. Sci. URSS (N.S) 1, 311–313 (1936)zbMATHGoogle Scholar
  15. 15.
    Murugan, V., Subrahmanyam, P.V.: Existence of continuous solutions for an iterative functional series equation with variable coefficients. Aequ. Math. 78, 167–176 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rothe, E.: Zur theorie der topologischen Ordnung und der Vektorfelder in Banachschen Raumen. Compos. Math. 5, 177–196 (1937)zbMATHGoogle Scholar
  17. 17.
    Rudin, W.: Functional Analysis. McGraw Hill International Edition (1991)Google Scholar
  18. 18.
    Ryll-Nardzewski, C.: On fixed points of semigroups of endomorphisms of linear spaces. In: Proceedings of the Fifth Berkely Symposium on Statistics and Probability, Berkeley, vol. II (1966)Google Scholar
  19. 19.
    Sadovski, B.N.: Asymptotically compact and densifying operators. Usp. Math. Nauk. 27, 81–146 (1972)Google Scholar
  20. 20.
    Schauder, J.: Der Fixpunktsatz in funktional raumen. Stud. Math. 2, 171–180 (1930)CrossRefGoogle Scholar
  21. 21.
    Terkelsen, F.: A short proof of Fan’s fixed point theorem. Proc. Am. Math. Soc. 42, 643–644 (1974)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Tychonoff, A.: Ein Fixpunktsatz. Math. Ann. 111, 767–776 (1935)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Werner, D.: A proof of the Markov-Kakutani fixed point theorem via the Hahn-Banach theorem. Extr. Math. 8, 37–38 (1993)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zhang, W., Baker, J.A.: Continuous solutions for a polynomial-like iterative equation with variable coefficients. Ann. Pol. Math. 73, 29–36 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations