Advertisement

Survey on Schema Induction from Knowledge Graphs

  • Qiu Ji
  • Guilin Qi
  • Huan Gao
  • Tianxing Wu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 957)

Abstract

With the rapid growth of knowledge graphs, schema induction, as a task of extracting relations or constraints from a knowledge graph for the classes and properties, becomes more critical and urgent. Schema induction plays an important role to facilitate many applications like integrating, querying and maintaining knowledge graphs. To provide a comprehensive survey of schema induction, in this paper, we overview existing schema induction approaches by mainly considering their learning methods, the types of learned axioms and the external resources that may be used during the learning process. Based on the comparison, we point out the challenges and directions for schema induction.

Keywords

Ontology learning Schema induction Knowledge graph Semantic web 

Notes

Acknowledgements

This paper is sponsored by NSFC 61602259 and U1736204.

References

  1. 1.
    Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 57–71. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33876-2_8CrossRefGoogle Scholar
  2. 2.
    Bühmann, L., Lehmann, J.: Pattern based knowledge base enrichment. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 33–48. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_3CrossRefGoogle Scholar
  3. 3.
    Cimiano, P.: Ontology Learning and Population from Text - Algorithms, Evaluation and Applications. Springer, New York (2006).  https://doi.org/10.1007/978-0-387-39252-3CrossRefGoogle Scholar
  4. 4.
    Ell, B., Hakimov, S., Cimiano, P.: Statistical induction of coupled domain/range restrictions from RDF knowledge bases. In: van Erp, M., Hellmann, S., McCrae, J.P., Chiarcos, C., Choi, K.-S. (eds.) ISWC 2016. LNCS, vol. 10579, pp. 27–40. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-68723-0_3CrossRefGoogle Scholar
  5. 5.
    Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Meersman, R., et al. (eds.) OTM 2011. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25106-1_20CrossRefGoogle Scholar
  6. 6.
    Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33615-7_18CrossRefGoogle Scholar
  7. 7.
    Galarraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)CrossRefGoogle Scholar
  8. 8.
    Gao, H., Qi, G., Ji, Q.: Schema induction from incomplete semantic data. In: Intelligent Data Analysis (2018, to appear)Google Scholar
  9. 9.
    Hellmann, S., Lehmann, J., Auer, S., Sheth, A.: Learning of OWL class descriptions on very large knowledge bases. Int. J. Semant. Web Inf. Syst. 5(2), 25–48 (2009)CrossRefGoogle Scholar
  10. 10.
    Irny, R., Kumar, P.S.: Mining inverse and symmetric axioms in linked data. In: JIST, pp. 215–231 (2017)Google Scholar
  11. 11.
    Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\cal{ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78469-2_17CrossRefzbMATHGoogle Scholar
  12. 12.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78(1–2), 203–250 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging mappings between lightweight ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87696-0_11CrossRefGoogle Scholar
  14. 14.
    Muñoz, E., Nickles, M.: Mining cardinalities from knowledge bases. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 447–462. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64468-4_34CrossRefGoogle Scholar
  15. 15.
    Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Terminological cluster trees for disjointness axiom discovery. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 184–201. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58068-5_12CrossRefGoogle Scholar
  16. 16.
    Sheu, P., Yu, H., Ramamoorthy, C.V., Joshi, A.K.: Machine Learning Methods for Ontology Mining. Wiley-IEEE Press, Hoboken (2010)Google Scholar
  17. 17.
    Subhashree, S., Irny, R., Sreenivasa Kumar, P.: Review of approaches for linked data ontology enrichment. In: Negi, A., Bhatnagar, R., Parida, L. (eds.) ICDCIT 2018. LNCS, vol. 10722, pp. 27–49. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72344-0_2CrossRefGoogle Scholar
  18. 18.
    Toepper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: I-SEMANTICS, pp. 33–40 (2012)Google Scholar
  19. 19.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72667-8_14CrossRefGoogle Scholar
  20. 20.
    Völker, J., Fleischhacker, D., Stuckenschmidt, H.: Automatic acquisition of class disjointness. J. Web Semant. 35, 124–139 (2015)CrossRefGoogle Scholar
  21. 21.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21034-1_9CrossRefGoogle Scholar
  22. 22.
    Zhu, M., Gao, Z., Pan, J.Z., Zhao, Y., Ying, X., Quan, Z.: Tbox learning from incomplete data by inference in BelNet+. Knowl.-Based Syst. 75(C), 30–40 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Modern Posts and Institute of Modern PostsNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.School of Computer Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations