Enhancement Methods for Low Visibility and Fog Degraded Images

  • Gurveer SinghEmail author
  • Ashima Singh
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 955)


Image processing methods are widely used to improvise the quality of an image to extract the hidden information in it. Phenomena of scattering and atmosphere absorption results inhaze smoke and fog. Weather conditions majorly influence the visual system as well as detection and identification of the targets and degrade the picture quality. In the previous year, researchers have been focused on the high-quality images or videos for enhancement as well as to detect objects. In this paper, we have reviewed previous papers and compare based on used techniques and performance parameters.


Image processing Visual system Image enhancement and low visibility techniques 


  1. 1.
    Russ, J.C.: The Image Processing Handbook. CRC Press (2016)Google Scholar
  2. 2.
    Alsayem, H.A., Kadah, Y.M.: Image Restoration Techniques in Super-Resolution Reconstruction of MRI Images (2016). IEEE. 978-1-4673-9652-3/16Google Scholar
  3. 3.
    Ručka, L., Peterlík, I.: Fast reconstruction of image deformation field using radial basis function. In: IEEE 14th International Symposium on (2017).
  4. 4.
    Thakur, R.K., Saravanan, C.: Classification of colour hazy images. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 2159–2163. IEEE, Mar 2016Google Scholar
  5. 5.
    Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. (TOG) 25(3), 533–540 (2006)Google Scholar
  6. 6.
    Sangeetha, N., Anusudha, K.: Image defogging using enhancement techniques. In: 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP), pp. 1–5. IEEE, Jan 2017Google Scholar
  7. 7.
    Choo, H., Franconeri, S.L.: Objects with reduced visibility still contribute to size averaging. Atten. Percept. Psychophys. 72(1), 86–99 (2010)CrossRefGoogle Scholar
  8. 8.
    Hurtós, N., Ribas, D., Cufí, X., Petillot, Y., Salvi, J.: Fourier-based registration for robust forward-looking sonar mosaicing in low-visibility underwater environments. J. Field Robot. 32(1), 123–151 (2015)CrossRefGoogle Scholar
  9. 9.
    Lin, Z., Murray, S.O.: Automaticity of unconscious response inhibition: Comment on Chiu and Aron (2014) (2015)Google Scholar
  10. 10.
    Van Damme, T.: Computer vision photogrammetry for underwater archaeological site recording in a low-visibility environment. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 40(5), 231 (2015)CrossRefGoogle Scholar
  11. 11.
    Maini, R., Aggarwal, H.: A comprehensive review of image enhancement techniques (2010). arXiv preprint arXiv:1003.4053
  12. 12.
    Sawant, H.K., Deore, M.: A comprehensive review of image enhancement techniques. Int. J. Comput. Technol. Electron. Eng. (IJCTEE) 1(2), 39–44 (2010)Google Scholar
  13. 13.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature 521(7553), 436 (2015)Google Scholar
  14. 14.
    Kaur, A., Kaur, R., Kumar, N.: A review on image steganography techniques. Int. J. Comput. Appl. 123(4) (2015)Google Scholar
  15. 15.
    Tiwari, A., Yadav, S.R., Mittal, N.K.: A review on different image steganography techniques. Int. J. Eng. Innov. Technol. (IJEIT) 3, 19–23 (2014)Google Scholar
  16. 16.
    Chitradevi, B., Srimathi, P.: An overview on image processing techniques. Int. J. Innov. Res. Comput. Commun. Eng. (IJIRCCE) 2(11) (2014)Google Scholar
  17. 17.
  18. 18.
    Gupta, V., Lehal, G.S.: A survey of text mining techniques and applications. J. Emerg. Technol. web Intell. 1(1), 60–76 (2009)Google Scholar
  19. 19.
    Tang, X., Liu, K., Cui, J., Wen, F., Wang, X.: Intentsearch: capturing user intention for one-click internet image search. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1342–1353 (2012)CrossRefGoogle Scholar
  20. 20.
    Nehru, E.I., Mala, T.: Automatic e-content generation. In: Conference Papers Conference Papers, p. 109, Sept 2009Google Scholar
  21. 21.
  22. 22.
    Maru, M., Parikh, M.C.: Image restoration techniques: a survey. Int. J. Comput. Appl. 160(6) (2017) (0975–8887)Google Scholar
  23. 23.
    Hu, Y., Xu, Y.: An image restoration method based on cross-correlation. In: 2017 6th International Conference on Computer Science and Network Technology (ICCSNT). IEEE (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of CSEThapar UniversityPatialaIndia

Personalised recommendations