Advertisement

A Study of Link Prediction Using Deep Learning

  • Anant Dadu
  • Ajay Kumar
  • Harish Kumar Shakya
  • Siddhartha Kumar ArjariaEmail author
  • Bhaskar Biswas
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 955)

Abstract

Prediction of missing or future link is an arduous task in complex networks especially in the current scenario of big data where networks are growing at a high speed. We investigate into both the supervised and unsupervised learning approaches to solve this problem. Supervised approaches use the latent representation of nodes (representation learning) while unsupervised approaches work on the heuristic score given to each node pair having no edge in between them. In this work, Deep learning concept is explored to predict the missing links in the network as a part of the supervised classification. Our experiment on four real-world datasets represents that deep learning approach outperforms some existing supervised learning methods like the Random forest (RF) and the Logistic Regression (LR).

Keywords

Link prediction Deep learning Representation learning Unsupervised learning Supervised learning 

References

  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 635–644 (2011)Google Scholar
  3. 3.
    Bebis, G., Georgiopoulos, M.: Feed-forward neural networks. IEEE Potentials 13(4), 27–31 (1994)CrossRefGoogle Scholar
  4. 4.
    Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)zbMATHGoogle Scholar
  5. 5.
    Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)zbMATHGoogle Scholar
  6. 6.
    Zhu, J., Hong, J., Hughes, J.G.: Using Markov models for web site link prediction. In: Proceedings of the Thirteenth ACM Conference on Hypertext and Hypermedia, HYPERTEXT 2002, pp. 169–170 (2002)Google Scholar
  7. 7.
    Airodi, E., Blei, D., Xing, E., Fienberg, S.: Mixed membership stochastic block models for relational data, with applications to protein-protein interactions. In: Proceedings of International Biometric Society-ENAR Annual Meetings (2006)Google Scholar
  8. 8.
    Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)CrossRefGoogle Scholar
  9. 9.
    Liu, F., Liu, B., Sun, C., Liu, M., Wang, X.: Deep belief network-based approaches for link prediction in signed social networks. Entropy 17(4), 2140–2169 (2015)CrossRefGoogle Scholar
  10. 10.
    Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)Google Scholar
  11. 11.
    Ho, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  13. 13.
    Huang, Z.: Link prediction based on graph topology: the predictive value of generalized clustering coefficient. In: LinkKDD (2006)Google Scholar
  14. 14.
    Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 2936 (1982).  https://doi.org/10.1148/radiology.143.1.7063747CrossRefGoogle Scholar
  15. 15.
    Jeong, H., Neda, Z., Barabasi, A.L.: Measuring preferential attachment in evolving networks. EPL (Eur. Lett.) 61(4), 567 (2003)CrossRefGoogle Scholar
  16. 16.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  17. 17.
    Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)Google Scholar
  18. 18.
    Liaw, A., Wiener, M.: Classification and regression by random forest. R News 2(3), 18–22 (2002)Google Scholar
  19. 19.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  20. 20.
    Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001).  https://doi.org/10.1103/PhysRevE.64.025102CrossRefGoogle Scholar
  21. 21.
    Jaccard, P.: Distribution de la flore alpine dans le bassin des dranses et dans quelques regions voisines. Bull. Soc. Vaud. Sci. Nat. 37, 241–272 (1901)Google Scholar
  22. 22.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)CrossRefGoogle Scholar
  23. 23.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  24. 24.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)Google Scholar
  25. 25.
    Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.Y.: Learning deep representations for graph clustering. In: AAAI, pp. 1293–1299 (2014)Google Scholar
  26. 26.
    Li, X., Du, N., Li, H., Li, K., Gao, J., Zhang, A.: A deep learning approach to link prediction in dynamic networks. In: Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 289–297 (2014)Google Scholar
  27. 27.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)CrossRefGoogle Scholar
  28. 28.
    Zafarani, R., Liu, H.: Social computing data repository at ASU (2009). http://socialcomputing.asu.edu

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anant Dadu
    • 1
  • Ajay Kumar
    • 1
  • Harish Kumar Shakya
    • 1
  • Siddhartha Kumar Arjaria
    • 2
    Email author
  • Bhaskar Biswas
    • 1
  1. 1.Indian Institute of Technology (BHU)VaranasiIndia
  2. 2.Information TechnologyRajkiya Engineering CollegeBandaIndia

Personalised recommendations