Advertisement

Comparative Investigation of Different Feature Extraction Techniques for Lung Cancer Detection System

  • Pankaj NangliaEmail author
  • Sumit Kumar
  • Davinder Rathi
  • Paramjit Singh
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 955)

Abstract

The present work demonstrates the utilization of computer-aided diagnosis system for the detection of lung cancer diseases using computer tomography (CT) images, magnetic resonance images (MRI) and X-ray images. The feature extraction process in lung cancer images has been achieved by scale invariant feature transform (SIFT), speeded up robust features (SURF), and principal component analysis (PCA) techniques. In this work, a comparative investigation of different feature extraction technique such as SIFT, SURF, and PCA has been discussed in order to find the best descriptor for feature extraction of cancerous subjects to the normal subjects in terms of two parameters named as execution time and error rate. The main aspect of these learning approaches is to find the valid key points in minimum execution time with least error. The results reveal that the SURF technique has an average execution time of 0.448 s with an average error rate value of 25.704 which is least among three techniques. Hence, SURF extraction technique is best as compared to SIFT and PCA.

Keywords

Lung cancer SIFT SURF PCA Time and error rate 

Notes

Acknowledgement

The authors would like to thanks Honorable Vice-chancellor Dr. R.K Gupta of Maharaja Agrasen University Solan, Himachal Pradesh, India for continuous support during the execution of this work.

References

  1. 1.
    Sharma, S., Nanglia, P., Kumar, S., Shukla, P.: Detection and analysis of lung cancer using radiomic approach. In: International Conference on Computational Strategies for Next Generation Technologies (2017, in the press)Google Scholar
  2. 2.
    Radhakrishnan, M., Kuttiannan, T.: Comparative analysis of feature extraction methods for the classification of prostate cancer from the trus medical images. Int. J. Comput. Sci. 9, 171–179 (2012)Google Scholar
  3. 3.
    An Information Resource on Lung Cancer Testing for Pathologists and Oncologists. https://Www.Verywell.Com/Non-Small-Cell-Lung-Cancer-2249281
  4. 4.
    Makaju, S., Prasad, P.W.C., Alsadoon, A., Singh, A.K.: Lung cancer detection using CT Scan images. In: 6th International Conference on Smart Computing and Communications Kurukshetra, pp. 107–114 (2017)Google Scholar
  5. 5.
    Chander, M.P., Rao, M.V., Rajinikanth, T.-V.: Detection of lung cancer using digital image processing techniques: a comparative study. Int. J. Med. Imaging. 5, 58–62 (2017).  https://doi.org/10.11648/j.ijmi.20170505.12CrossRefGoogle Scholar
  6. 6.
    Ma, L., Wang, D.D., et al.: An eigen-binding site based method for the analysis of anti-EGFR drug resistance in lung cancer treatment. IEEE/ACM Trans. Comput. Biol. Bioinf. 14, 1187–1194 (2017).  https://doi.org/10.1109/tcbb.2016.2568184CrossRefGoogle Scholar
  7. 7.
    El Hussein, A., Tynga, I.-M., Harith, M.-A.: Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J. Photochem. Photobiol. Biol. 153, 67–75 (2015).  https://doi.org/10.1016/j.jphotobiol.2015.08.028CrossRefGoogle Scholar
  8. 8.
    Song, Y., Cai, W., Zhou, Y., Feng, D.D.: Feature-based image patch approximation for lung tissue classification. IEEE Trans. Med. Imag. 30, 797–808 (2013)CrossRefGoogle Scholar
  9. 9.
    Firnimo, M., Morais, A.H., et al.: Computer-aided detection system for lung cancer in computed tomography scans: review and future prospects. In: Biomedical Engineering, pp. 1–16 (2014)Google Scholar
  10. 10.
    El Gayar, M.-M., Soliman, H., Meky, N.: A compative study of image low level featuteextection algorithm. Egypt. Inf. J. 14, 175–181 (2013).  https://doi.org/10.1016/j.eij.2013.06.003CrossRefGoogle Scholar
  11. 11.
    Kabbai, L., Abdellaoui, M., Douik, A.: New robust descriptor for image matching. J. Theor. Appl. Inf. Technol. 87, 451–460 (2016)Google Scholar
  12. 12.
    Wang, J., Watada, J.: Panoramic image mosaic based on SURF algorithm using Open CV. In: IEEE 9th International Symposium on Intelligent Signal Processing (WISP) Proceedings, pp. 1–6 (2015).  https://doi.org/10.1109/wisp.2015.7139183
  13. 13.
    Saini, A.-K., Bhadauria, H.-S., Singh, A.: A Survey of noise removal methodologies for lung cancer diagnosis. In: Second International Conference on Computational Intelligence and Communication Technology (CICT) Ghaziabad, pp. 673–678 (2016).  https://doi.org/10.1109/cict.2016.139
  14. 14.
    Teramoto, A., Fujita, H.: Fast lung nodule detection in chest ct images using cylindrical nodule-enhancement filter. Int. J. Comput. Assist. Radiol. Surg. 8(2), 193–205 (2013)CrossRefGoogle Scholar
  15. 15.
    Kulkarni, A., Panditrao, A.: Classification of lung cancer stages on CT scan images using image processing. In: IEEE International Conference on Advanced Communications Control and Computing Technologies, pp. 1384–1388 (2014).  https://doi.org/10.1109/icaccct.2014.7019327
  16. 16.
    Han, G., Liu, X., Han, F., et al.: Lung diseases for computer-aided detection and diagnosis research and medical education. IEEE Trans. Biomed. Eng. 62, 648–656 (2015).  https://doi.org/10.1109/TBME.2014.2363131CrossRefGoogle Scholar
  17. 17.
    Shivakumar, B.-L., Baboo, S.S.: Automated forensic method for copy-move forgery detection based on harris interest points and SIFT descriptors. Int. J. Comput. Appl. 27, 9–17 (2011).  https://doi.org/10.5120/3283-4472CrossRefGoogle Scholar
  18. 18.
    Chumerin, N., Van, Hulle, M.-M.: Comparison of two feature extraction methods based on maximization of mutual information. In: Proceedings of the 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, pp. 343–348 (2006).  https://doi.org/10.1109/mlsp.2006.275572
  19. 19.
    Lambin, P., Velazquez, E.R., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 104–118 (2012).  https://doi.org/10.1016/j.ejca.2011.11.036CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Cateni, S., Vannucci, M., et al.: Variable selection and feature extraction through artificial intelligence techniques. In: Multivariate Analysis in Management, Engineering and Science vol. 6, pp. 103–118 (2013).  https://doi.org/10.5772/53862
  22. 22.
    Peng, G., Tisch, U., Adams, O., et al.: Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009)CrossRefGoogle Scholar
  23. 23.
    Lowe, D.-G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  24. 24.
    Pang, Y., Li, W., Yuan, Y., Pan, J.: Fully affine invariant SURF for image matching. Neurocomputing 85, 6–10 (2012).  https://doi.org/10.1016/j.neucom.2011.12.006CrossRefGoogle Scholar
  25. 25.
    Ha, S.W., Moon, Y.-H.: Multiple object tracking using SIFT features and location matching. Int. J. Smart Home 5, 17–26 (2011)Google Scholar
  26. 26.
    Kang, H., Efros, A.A., Hebert, M., et al.: Image matching in large scale indoor environment. In: IEEE International Conference on Computer Vision and Pattern Recognition Workshop, pp. 33–40 (2009).  https://doi.org/10.1109/cvprw.2009.5204357
  27. 27.
    Huijuan, Z., Qiong, H.: Fast image matching basedon improved SURF algorithm. In: IEEE International conference Electronics Communications and Control (ICECC), pp. 1460–1463 (2011).  https://doi.org/10.1109/icecc.2011.6066546
  28. 28.
    Jin, X., Zhang, Y., Jin, Q.: Pulmonary nodule detection based on CT images using convolution neural network. In: 9th International Symposium On Computational Intelligence And Design (ISCID) (2016)  https://doi.org/10.1109/iscid.2016.1053
  29. 29.
    Yin, Y., et al.: Tumor cell load and heterogeneity estimation from diffusion-weighted MRI calibrated with histological data: an example from lung cancer. IEEE Trans. Med. Imaging (2017)Google Scholar
  30. 30.
    Sangamithraa, P., Govindaraju, S.: Lung tumour detection and classification using EK-Mean cluster clustering. In: International Conference On Wireless Communications, Signal Processing and Networking (Wispnet) (2016).  https://doi.org/10.1109/wispnet.2016.7566533
  31. 31.
    Sharma, S., Kumar. S., Aggarwal. E.: A study on adaptive wavelet technique for speckle noise removal. In: International conference on Communication and Computing Systems, pp. 131–136 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pankaj Nanglia
    • 1
    Email author
  • Sumit Kumar
    • 1
  • Davinder Rathi
    • 1
  • Paramjit Singh
    • 1
  1. 1.MAUBaddiIndia

Personalised recommendations