Advertisement

Biodiesel: A Survey on Production Methods and Catalysts

  • Ana Lúcia de Lima
  • Claudio J. A. MotaEmail author
Chapter

Abstract

Biodiesel is a biodegradable biofuel, which is non-toxic and free of sulfur and aromatics. In addition, the CO2 emitted during combustion is absorbed by plants during photosynthesis. It is a substitute for petroleum diesel and can be used without the need for the adaptation of existing engines and presents good lubrication capacity, prolonging the life of the engine and reducing the need for maintenance. The direct use of vegetable oil as biofuel is not applied due to its high viscosity and low volatility; the transesterification appears as the most used method for the production of biodiesel. The reaction of biodiesel production can be carried out with acidic, basic, or enzymatic catalysts, in addition to using homogeneous or heterogeneous catalysts. This chapter lists the different types of catalysts used in current scientific work, along with their advantages and disadvantages.

Keywords

Biofuel Catalytic biodiesel Transesterification Triglycerides 

Notes

Acknowledgments

The authors thank FINEP, FAPERJ, and CNPq for financial support.

References

  1. Abdullah SHYS, Hanapi NHM, Azid A et al (2017) A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew Sust Energ Rev 70:1040–1051CrossRefGoogle Scholar
  2. Aguieiras EC, Cavalcanti-Oliveira ED, de Castro AM, Langone MA, Freire DM (2014) Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 135:315–321CrossRefGoogle Scholar
  3. Aransiola E, Ojumu T, Oyekola O et al (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297CrossRefGoogle Scholar
  4. Balbino JM, de Menezes EW, Benvenutti EV et al (2011) Silica-supported guanidine catalyst for continuous flow biodiesel production. Green Chem 13(11):3111–3116CrossRefGoogle Scholar
  5. Banković-Ilić IB, Miladinović MR, Stamenković OS et al (2017) Application of nano CaO–based catalysts in biodiesel synthesis. Renew Sust Energ Rev 72:746–760CrossRefGoogle Scholar
  6. Borges M, Díaz L (2012) Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew Sust Energ Rev 16(5):2839–2849CrossRefGoogle Scholar
  7. Borges LD, Moura NN, Costa AA et al (2013) Investigation of biodiesel production by HUSY and Ce/HUSY zeolites: influence of structural and acidity parameters. Appl Catal A Gen 450:114–119CrossRefGoogle Scholar
  8. Calero J, Luna D, Sancho ED et al (2014) Development of a new biodiesel that integrates glycerol, by using CaO as heterogeneous catalyst, in the partial methanolysis of sunflower oil. Fuel 122:94–102CrossRefGoogle Scholar
  9. Cao W, Han H, Zhang J (2005) Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 84(4):347–351CrossRefGoogle Scholar
  10. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520CrossRefGoogle Scholar
  11. Colombo K, Ender L, Barros AAC (2017) The study of biodiesel production using CaO as a heterogeneous catalytic reaction. Egypt J Pet 26(2):341–349CrossRefGoogle Scholar
  12. da Conceição LRV, Carneiro LM, Giordani DS et al (2017) Synthesis of biodiesel from macaw palm oil using mesoporous solid catalyst comprising 12-molybdophosphoric acid and niobia. Renew Energy 113:119–128CrossRefGoogle Scholar
  13. de Lima AL, Mbengue A, San Gil RA et al (2014) Synthesis of amine-functionalized mesoporous silica basic catalysts for biodiesel production. Catal Today 226:210–216CrossRefGoogle Scholar
  14. de Lima AL, Ronconi CM, Mota CJ (2016) Heterogeneous basic catalysts for biodiesel production. Cat Sci Technol 6(9):2877–2891CrossRefGoogle Scholar
  15. de Lima AL, Vieira JS, Ronconi CM et al (2017) Tailored hybrid materials for biodiesel production: tunning the base type, support and preparation method for the best catalytic performance. Mol Catal 458:240–246.  https://doi.org/10.1016/j.mcat.2017.09.032 CrossRefGoogle Scholar
  16. de Mello BTF, Gonçalves JE, de Menezes Rodrigues G et al (2017) Hydroesterification of crambe oil (Crambe abyssinica H.) under pressurized conditions. Ind Crop Prod 97:110–119CrossRefGoogle Scholar
  17. Di Serio M, Mallardo S, Carotenuto G et al (2012) Mg/Al hydrotalcite catalyst for biodiesel production in continuous packed bed reactors. Catal Today 195(1):54–58CrossRefGoogle Scholar
  18. Farobie O, Matsumura Y (2017) State of the art of biodiesel production under supercritical conditions. Prog Energy Combust Sci 63:173–203CrossRefGoogle Scholar
  19. Ghesti GF, de Macedo JL, Resck IS et al (2007) FT-Raman spectroscopy quantification of biodiesel in a progressive soybean oil transesterification reaction and its correlation with 1H NMR spectroscopy methods. Energy Fuel 21(5):2475–2480CrossRefGoogle Scholar
  20. Hájek M, Kocík J, Frolich K et al (2017) Mg-Fe mixed oxides and their rehydrated mixed oxides as catalysts for transesterification. J Clean Prod 161:1423–1431CrossRefGoogle Scholar
  21. Hasan M, Rahman M (2017) Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: a review. Renew Sust Energ Rev 74:938–948CrossRefGoogle Scholar
  22. Helwani Z, Othman M, Aziz N et al (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 90(12):1502–1514CrossRefGoogle Scholar
  23. Helwani Z, Aziz N, Bakar M et al (2013) Conversion of Jatropha curcas oil into biodiesel using re-crystallized hydrotalcite. Energy Convers Manag 73:128–134CrossRefGoogle Scholar
  24. Imahara H, Xin J, Saka S (2009) Effect of CO2/N2 addition to supercritical methanol on reactivities and fuel qualities in biodiesel production. Fuel 88(7):1329–1332CrossRefGoogle Scholar
  25. Islam A, Taufiq-Yap YH, Chu C-M et al (2013) Studies on design of heterogeneous catalysts for biodiesel production. Process Saf Environ Prot 91(1):131–144CrossRefGoogle Scholar
  26. Joshi G, Rawat DS, Lamba BY et al (2015) Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides. Energy Convers Manag 96:258–267CrossRefGoogle Scholar
  27. Kamel DA, Farag HA, Amin NK et al (2018) Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: optimization and mechanism. Ind Crop Prod 111:407–413CrossRefGoogle Scholar
  28. Kesić Ž, Lukić I, Zdujić M et al (2016) Calcium oxide based catalysts for biodiesel production: a review. Chem Ind Chem Eng Q 22:391–408CrossRefGoogle Scholar
  29. Kiss AA, Omota F, Dimian AC et al (2006) The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top Catal 40(1–4):141–150CrossRefGoogle Scholar
  30. Lee AF, Bennett JA, Manayil JC et al (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916CrossRefGoogle Scholar
  31. Liu Y, Lotero E, Goodwin JG Jr et al (2007) Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts. Appl Catal A Gen 331:138–148CrossRefGoogle Scholar
  32. Liu W, Yin P, Liu X et al (2015) Biodiesel production from the esterification of fatty acid over organophosphonic acid. J Ind Eng Chem 21:893–899CrossRefGoogle Scholar
  33. Lotero E, Liu Y, Lopez DE et al (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44(14):5353–5363CrossRefGoogle Scholar
  34. Luque R, Lovett J, Datta B et al (2010) Biodiesel como possível substituição de combustível de combustível: uma visão geral multidisciplinar. Energia Environ Sci 3:1706–1721CrossRefGoogle Scholar
  35. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15CrossRefGoogle Scholar
  36. Mansir N, Taufiq-Yap YH, Rashid U et al (2017) Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energy Convers Manag 141:171–182CrossRefGoogle Scholar
  37. Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11(9):1285–1308CrossRefGoogle Scholar
  38. Minami E, Saka S (2006) Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 85(17–18):2479–2483CrossRefGoogle Scholar
  39. Minella M, Fabbri D, Calza P et al (2017) Selected hybrid photocatalytic materials for the removal of drugs from water. Curr Opin Green Sustain Chem 6:11–17CrossRefGoogle Scholar
  40. Moradi G, Mohadesi M, Hojabri Z (2014) Biodiesel production by CaO/SiO2 catalyst synthesized by the sol–gel process. React Kinet Mech Catal 113(1):169–186CrossRefGoogle Scholar
  41. Ngaosuwan K, Lotero E, Suwannakarn K et al (2009) Hydrolysis of triglycerides using solid acid catalysts. Ind Eng Chem Res 48(10):4757–4767CrossRefGoogle Scholar
  42. Nowicki J, Lach J, Organek M et al (2016) Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites. Appl Catal A Gen 524:17–24CrossRefGoogle Scholar
  43. Sbihi HM, Nehdi IA, El Blidi L et al (2015) Lipase/enzyme catalyzed biodiesel production from Prunus mahaleb: a comparative study with base catalyzed biodiesel production. Ind Crop Prod 76:1049–1054CrossRefGoogle Scholar
  44. Shah M, Poudel J, Kwak H et al (2015) Kinetic analysis of transesterification of waste pig fat in supercritical alcohols. Process Saf Environ Prot 98:239–244CrossRefGoogle Scholar
  45. Sikander U, Sufian S, Salam M (2017) A review of hydrotalcite based catalysts for hydrogen production systems. Int J Hydrog Energy 42(31):19851–19868CrossRefGoogle Scholar
  46. Su F, Guo Y (2014) Advancements in solid acid catalysts for biodiesel production. Green Chem 16(6):2934–2957CrossRefGoogle Scholar
  47. Sudsakorn K, Saiwuttikul S, Palitsakun S et al (2017) Biodiesel production from Jatropha curcas oil using strontium-doped CaO/MgO catalyst. J Environ Chem Eng 5(3):2845–2852CrossRefGoogle Scholar
  48. Tan H, Aziz AA, Aroua M (2013) Glycerol production and its applications as a raw material: a review. Renew Sust Energ Rev 27:118–127CrossRefGoogle Scholar
  49. Xie W, Fan M (2014) Biodiesel production by transesterification using tetraalkylammonium hydroxides immobilized onto SBA-15 as a solid catalyst. Chem Eng J 239:60–67CrossRefGoogle Scholar
  50. Xie W, Yang X, Fan M (2015) Novel solid base catalyst for biodiesel production: mesoporous SBA-15 silica immobilized with 1, 3-dicyclohexyl-2-octylguanidine. Renew Energy 80:230–237CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Instituto de Química, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.INCT Energia e AmbienteUFRJRio de JaneiroBrazil

Personalised recommendations