Advertisement

Applications of Jatropha curcas Cake

  • Simone MendonçaEmail author
  • Taísa Godoy Gomes
  • Félix Gonçalves de Siqueira
  • Robert Neil Gerard Miller
Chapter

Abstract

Jatropha curcas, a tropical and subtropical shrub/tree, has been emerging as a promising biodiesel crop because of its high oil content and ability to grow in marginal lands. The kernel cake is the major by-product of the Jatropha biodiesel chain, rich in protein and has potential to be used in livestock feed; however, the presence of anti-nutritional factors and phorbol esters limits its use. Thus, this report discusses on phorbol esters toxicity and risks and strategies for cake detoxification. Besides feeding application of J. curcas cake – that we see as a possibility of integration with biodiesel and food chains – we presented some other alternative uses.

Keywords

Animal feed Biodiesel Detoxification Phorbol esters Press cake 

References

  1. Adebayo G, Ameen O (2017) Physico-chemical properties of biodiesel produced from Jatropha curcas oil and fossil diesel. J Microbiol Biotechnol Res 1(1):12–16Google Scholar
  2. Barros C, Rodrigues M, Nunes F et al (2015) The effect of Jatropha curcas seed meal on growth performance and internal organs development and lesions in broiler chickens. Rev Bras Ciênc Aví 17(SPE):1–6CrossRefGoogle Scholar
  3. Becker K, Makkar H (2008) Jatropha curcas: a potential source for tomorrow’s oil and biodiesel. Lipid Technol 20(5):104–107CrossRefGoogle Scholar
  4. Belewu M, Muhammed N, Ajayi F et al (2009) Performance characteristics of goat fed Trichoderma treated feather meal-rice husk mixture. Anim Nutr Feed Technol 9(2):203–208Google Scholar
  5. Chang C-F, Weng J-H, Lin K-Y et al (2014) Phorbol esters degradation and enzyme production by Bacillus using jatropha seed cake as substrate. J ISSN 1929:2732Google Scholar
  6. Choudhury AR, Sharma N, Prasad G (2012) Deoiled jatropha seed cake is a useful nutrient for pullulan production. Microb Cell Factories 11(1):39CrossRefGoogle Scholar
  7. Devappa RK, Makkar HPS, Becker K (2010) Jatropha toxicity – a review. J Toxicol Environ Health Part B 13(6):476–507CrossRefGoogle Scholar
  8. Devappa RK, Malakar CC, Makkar HPS et al (2013a) Pharmaceutical potential of phorbol esters from Jatropha curcas oil. Nat Prod Res 27(16):1459–1462PubMedCrossRefGoogle Scholar
  9. Devappa RK, Makkar HPS, Becker K (2013b) Phytochemicals in Jatropha seeds and potential applications of Jatropha curcas phorbol esters. In: Carels N, Sujatha M, Bahadur B (eds) Jatropha challenges for a new energy crop. Vol 1. Farming, economics and biofuel. Springer, New York, pp 399–418Google Scholar
  10. Devappa RK, Roach JS, Makkar HPS et al (2013c) Occular and dermal toxicity of Jatropha curcas phorbol esters. Ecotoxicol Environ Safe 94:172–178CrossRefGoogle Scholar
  11. Duraes FOM, Laviola BGA, Alves AA (2012) Potential and challenges in making physic nut (Jatropha curcas L.) a viable biofuel crop: the Brazilian perspective. Plant Sci Rev 2011:179Google Scholar
  12. Faoziyat SA, Amina AE-IM, Adeyemo AA et al (2014) Aspergillus-fermented Jatropha curcas seed cake: proximate composition and effects on biochemical indices in Wistar rats. Biol Lett 51(1):37–46CrossRefGoogle Scholar
  13. Félix-Bernal J, Angulo-Escalante M, Estrada-Angulo A et al (2014) Feeding value of non-toxic Jatropha curcas seed cake for partially replacing dry-rolled corn and soybean meal in lambs fed finishing diets. Anim Feed Sci Technol 198:107–116CrossRefGoogle Scholar
  14. Goel G, Makkar HP, Francis G et al (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26(4):279–288PubMedCrossRefGoogle Scholar
  15. Gomes TG, Hadi SMI, Costa Alves GS et al (2018) Current strategies for the detoxification of Jatropha curcas seed cake: a review. J Agric Food Chem 66(11):2510–2522PubMedCrossRefGoogle Scholar
  16. Haas W, Sterk H, Mittelbach M (2002) Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J Nat Prod 65(10):1434–1440PubMedCrossRefGoogle Scholar
  17. Harter T, Buhrke F, Kumar V et al (2011) Substitution of fish meal by Jatropha curcas kernel meal: effects on growth performance and body composition of white leg shrimp (Litopenaeus vannamei). Aqua Nutr 17(5):542–548CrossRefGoogle Scholar
  18. He W, King AJ, Khan MA et al (2011) Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Biochem 49(10):1183–1190PubMedCrossRefGoogle Scholar
  19. Hidayat H, Keijsers E, Prijanto U et al (2014) Preparation and properties of binderless boards from Jatropha curcas L. seed cake. Ind Crop Prod 52:245–254CrossRefGoogle Scholar
  20. Honorato CA, da Silva CJ, Flores-Quintana CI et al (2017) Jatropha cake (Jatropha curcas): hepatotoxic implications. Embrapa Agropecuária Oeste-Artigo em Periódico Indexado (ALICE)Google Scholar
  21. Insanu M, Dimaki C, Wilkins R et al (2013) Rational use of Jatropha curcas L. in food and medicine: from toxicity problems to safe applications. Phytochem Rev 12(1):107–119CrossRefGoogle Scholar
  22. Jongschaap R, Corré W, Bindraban P et al (2007) Claims and facts on Jatropha curcas L.: global Jatropha curcas evaluation. Breeding and propagation programme. Plant Research InternationalGoogle Scholar
  23. Joshi C, Khare S (2011) Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresour Technol 102(2):1722–1726PubMedCrossRefGoogle Scholar
  24. Kasuya MCM, da Luz JMR, da Silva Pereira LP et al (2012) Bio-detoxification of jatropha seed cake and its use in animal feed. In: Biodiesel-feedstocks, production and applications. Intech, RijekaGoogle Scholar
  25. Katole S, Saha SK, Das A et al (2013) Nutrient intake, digestibility, and blood metabolites of goats fed diets containing processed jatropha meal. Trop Anim Health Prod 45(7):1563–1569PubMedCrossRefGoogle Scholar
  26. Koh MY, Ghazi TIM (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sustain Energ Rev 15(5):2240–2251CrossRefGoogle Scholar
  27. Kovendan K, Murugan K, Vincent S et al (2011) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 109(5):1251–1257PubMedCrossRefGoogle Scholar
  28. Krome C, Jauncey K, Fedderke S et al (2014) Effect of replacing different levels of dietary fishmeal with Jatropha curcas kernel meal on the development of Nile tilapia Oreochromis niloticus (Linnaeus, 1758). J Appl Ichthyol 30(3):507–512CrossRefGoogle Scholar
  29. Kumar A, Sharma S (2008) An evaluation of multipurpose oilseed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod 28(1):1–10CrossRefGoogle Scholar
  30. Li C-Y, Devappa RK, Liu J-X et al (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48(2):620–625PubMedCrossRefGoogle Scholar
  31. Li Y, Chen L, Zhang Y et al (2018) Substitution of soybean meal with detoxified Jatropha curcas kernel meal: effects on performance, nutrient utilization, and meat edibility of growing pigs. Asian Australas J Anim Sci 31(6):888PubMedCrossRefGoogle Scholar
  32. Makkar HP, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111(8):773–787CrossRefGoogle Scholar
  33. Makkar H, Becker K, Sporer F et al (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 45(8):3152–3157CrossRefGoogle Scholar
  34. Makkar H, Aderibigbe A, Becker K (1998) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62(2):207–215CrossRefGoogle Scholar
  35. Makkar H, Maes J, De Greyt W et al (2009) Removal and degradation of phorbol esters during pre-treatment and transesterification of Jatropha curcas oil. J Am Oil Chem Soc 86(2):173–181CrossRefGoogle Scholar
  36. Ministério De Minas E Energia – MME. Boletim mensal dos combustíveis Renováveis, Brasília, SPG, n. 110, July–August 2017Google Scholar
  37. Ncube T, Howard RL, Abotsi EK et al (2012) Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind Crop Prod 37(1):118–123CrossRefGoogle Scholar
  38. Oliveira P, Lima P, Campeche A et al (2013) Growth and carcass characteristics of Santa Inês lambs fed diet supplemented with physic nut meal free of phorbol ester. Small Rum Res 114(1):20–25CrossRefGoogle Scholar
  39. Oskoueian E, Abdullah N, Ahmad S (2012) Phorbol esters isolated from Jatropha meal induced apoptosis-mediated inhibition in proliferation of Chang and Vero cell lines. Int J Mol Sci 13(11):13816–13829PubMedPubMedCentralCrossRefGoogle Scholar
  40. Pathak R, Sharma A, Adak A et al (2016) Role of Jatropha curcas deoiled cake as substrate for the production of cellulases and xylanase and additive in vermicomposting of kitchen waste. J Pure Appl Microbiol 10(4):3163–3173CrossRefGoogle Scholar
  41. Patil SS, Sharma K, Dutta N et al (2015) Effect of feeding detoxified Jatropha curcas meal on carcass characteristics and meat quality in lambs. Indian J Anim Sci 85(3):307–310Google Scholar
  42. Quirino BF, Brasil BS, Laviola BG et al (2014) Critical analysis of feedstock availability and composition, and new potential resources for biodiesel production in Brazil. In: Biofuels in Brazil. Springer, pp 331–350Google Scholar
  43. Raja Krishna Kumar G, Bapat VA, Johnson TS (2013) Phorbol esters and other toxic constituents of Jatropha curcas L. In: Carels N, Sujatha M, Bahadur B (eds) Jatropha challenges for a new energy crop. Vol 1. Farming, economics and biofuel. Springer, New York, pp 457–476Google Scholar
  44. Rakshit K, Darukeshwara J, Raj KR et al (2008) Toxicity studies of detoxified Jatropha meal (Jatropha curcas) in rats. Food Chem Toxicol 46(12):3621–3625PubMedCrossRefGoogle Scholar
  45. Ratnadass A, Wink M (2012) The phorbol ester fraction from Jatropha curcas seed oil: potential and limits for crop protection against insect pests. Int J Mol Sci 13(12):16157–16171PubMedPubMedCentralCrossRefGoogle Scholar
  46. Shamna N, Sardar P, Sahu N et al (2015) Nutritional evaluation of fermented Jatropha protein concentrate in Labeo rohita fingerlings. Aqua Nutr 21(1):33–42CrossRefGoogle Scholar
  47. Soares A, Carvalho L, Melo E et al (2015) A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity. Exp Parasitol 153:111–117PubMedCrossRefGoogle Scholar
  48. Strair RK, Schaar D, Goodell L et al (2002) Administration of a phorbol ester to patients with hematological malignancies: preliminary results from a phase I clinical trial of 12-O-tetradecanoylphorbol-13-acetate. Clin Cancer Res 8(8):2512–2518PubMedGoogle Scholar
  49. Teixeira Sousa Moura L, Palomaris Mariano Souza D, Mendonça S et al (2017) Histopathological and reproductive evaluation in male rats fed Jatropha curcas Seed cake with or without alkaline hydrolysis and subjected to heat treatment. BioMed Res Int 2017:6123408PubMedPubMedCentralCrossRefGoogle Scholar
  50. Wang H, Chen Y, Liu H et al (2011) Effects of replacing soybean meal by detoxified Jatropha curcas kernel meal in the diet of growing pigs on their growth, serum biochemical parameters and visceral organs. Anim Feed Sci Technol 170(1–2):141–146CrossRefGoogle Scholar
  51. Watanabe T, Shino A, Akashi K et al (2014) Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery. PLoS One 9(9):e106893PubMedPubMedCentralCrossRefGoogle Scholar
  52. Zhao Y, Wang Y, Wang H et al (2018) Nutritional value of detoxified Jatropha curcas seed cake protein isolates using rats as an animal model. Anim Nutr.  https://doi.org/10.1016/j.aninu.2018.03.003

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Simone Mendonça
    • 1
    Email author
  • Taísa Godoy Gomes
    • 2
  • Félix Gonçalves de Siqueira
    • 1
  • Robert Neil Gerard Miller
    • 2
  1. 1.Embrapa AgroenergiaBrasíliaBrazil
  2. 2.Instituto de Ciências Biológicas, Departamento de Biologia CelularUniversidade de Brasília, Campus Universitário Darcy RibeiroBrasíliaBrazil

Personalised recommendations