Advertisement

Jatropha: From Seed to Plant, Seed, Oil, and Beyond

  • Atul Grover
  • Sweta Singh
  • Abhinav Singh
  • Madhu Bala
Chapter

Abstract

Jatropha curcas (Jatropha), one of the most popular biofuel crops, is also one of the most controversial crops. It is generally hailed as biofuel mandate crop in Asia and Africa, but its low genetic diversity in these continents has failed most of the crop improvement programs initiated so far. Breeding through the utilization of germplasm from Mexico is one of the priority areas for its genetic improvement. Nevertheless, proper agricultural practices, which may vary from region to region, are also important, not only to obtain optimum yields from improved germplasm but also the best yield from the germplasm introduced in different agroecological systems from the wild around the Jatropha belt. It is desired that Jatropha plantations sustain themselves, and resources meant for agriculture for food shall not be diverted towards agriculture for fuels. Irrigation, nevertheless, plays an important role in ensuring economically beneficial yields from jatropha cultivation. Similarly, application of fertilizers (NPK) is important for obtaining a good harvest from Jatropha fields. While, biodiesel, obtained through transesterification, is the major fuel obtained from Jatropha, many other fuels like biogas, fuel briquettes, Fischer-Tropsch (FT) diesel, ethanol, etc. can also be obtained as by-products. Utilization of biodiesel blended with fossil diesel is least technologically challenging with regard to Jatropha-based economy. However, availability of desired quantities of fuel is a challenge. Despite all pros and cons associated with Jatropha, it is still considered as an ideal feedstock for biodiesel, which doesn’t compete with food crops, and returns are offered through several by-products.

Keywords

Agrotechnology Biodiesel Genetic diversity Origin Toxicity 

References

  1. Abdulla JM, Janagoudar BS, Biradar DP et al (2009) Genetic diversity analysis of elite Jatropha curcas L. genotypes using randomly amplified polymorphic DNA markers. J Agric Sci 22:293–295Google Scholar
  2. Agbogidi OM, Akparobi SO, Eruotor PG (2013) Health and environmental benefits of Jatropha curcas linn. Appl Sci Rep 1:36–39Google Scholar
  3. Ahmed WA, Salimon J (2009) Phorbol ester as toxic constituents of tropical Jatropha curcas seed oil. Eur J Sci Res 3:429–436Google Scholar
  4. Alam NCN, Abdullah TL, Abdullah NA (2011) Flowering and fruit set under Malaysian climate of Jatropha curcas L. Am J Agric Biol Sci 6:142–147CrossRefGoogle Scholar
  5. Ali N, Kurchania AK, Babel S (2010) Bio-methanization of Jatropha curcas defatted waste. J. Eng Technol Res 2:38–43Google Scholar
  6. Ambrosi DG, Galla G, Purelli M et al (2010) DNA markers and FCSS analysis shed light on the genetic diversity and reproductive strategy of Jatropha curcas L. Diversity 2:810–836CrossRefGoogle Scholar
  7. Avendaño R, García Díaz E, Valdez-Melara M et al (2015) Genetic diversity analysis of Jatropha species from Costa Rica using AFLP markers. Am J Plant Sci 6:2426–2438CrossRefGoogle Scholar
  8. Badoni P, Kumari M, Patade VY et al (2016) Biochemical and physiological analysis of zinc tolerance in Jatropha curcas. J Exp Biol Agric Sci 4:7–15Google Scholar
  9. Baroutian S, Aroua MK, Raman AAA et al (2013) Blended aviation biofuels from esterified Jatropha curcas and waste vegetable oils. J Taiwan Inst Chem Eng 44:911–916CrossRefGoogle Scholar
  10. Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  11. Basha SD, Francis G, Makkar HPS et al (2009) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823CrossRefGoogle Scholar
  12. Behera SK, Srivastava P, Pathre UV et al (2010) An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 Plant Canopy Analyzer. Agric Forest Meteorol 150:307–311CrossRefGoogle Scholar
  13. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bergmann JC, Tupinamba DD, Costa OYA et al (2013) Biodiesel production in Brazil and alternative biomass feedstocks. Renew Sustain Energ Rev 21:411–420CrossRefGoogle Scholar
  15. Brasileiro BG, Dias DCF, Bhering MC et al (2012) Floral biology characterization of seed germination in physic nut (Jatropha curcas L.). Rev Bras Sem 34:556–562CrossRefGoogle Scholar
  16. Bueso F, Sosa I, Chun R et al (2016) Phorbol esters seed content and distribution in Latin American provenances of Jatropha curcas L.: potential for biopesticide, food and feed. SpringerPlus 5:445PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carels N (2013) Towards the domestication of Jatropha: the integration of science. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha challenges for a new energy crop, vol II. Springer, New York, pp 263–299CrossRefGoogle Scholar
  18. Chivandi E, Mtimuni JP, Read JS et al (2004) Effect of processing method on phorbol esters concentration, total phenolics, trypsin inhibitor activity and the proximate composition of the Zimbabwean Jatropha curcas provenance: a potential livestock feed. Pak J Biol Sci 7:1001–1005CrossRefGoogle Scholar
  19. De Barros CRM, Ferreira LMM, Nunes FM et al (2011) The potential of white rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake. Eng Life Sci 11:107–110CrossRefGoogle Scholar
  20. Devappa RK, Swamylingappa (2008) Biochemical and nutritional evaluation of jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J Sci Food Agric 88:911–919CrossRefGoogle Scholar
  21. Devappa RK, Maes J, Makkar HPS et al (2010a) Quality of biodiesel prepared from phorbol ester extracted Jatropha curcas oil. J Am Oil Chem Soc 87:697–704CrossRefGoogle Scholar
  22. Devappa RK, Makkar HP, Becker K (2010b) Biodegradation of Jatropha curcas phorbol esters in soil. J Sci Food Agric 90:2090–2097PubMedPubMedCentralGoogle Scholar
  23. Devappa RK, Rajesh SK, Kumar V et al (2012) Activities of Jatropha curcas phorbol esters in various bioassays. Ecotoxicol Environ Saf 78:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dias LA, Missio RF, Dias DC (2012) Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production. Genet Mol Res 11:2719–2728PubMedCrossRefPubMedCentralGoogle Scholar
  25. DIBER (2017) DRDO Army bio diesel programme – technical report. Defence Institute of Bio-Energy Research (DIBER), Defence Research and Development Organization (DRDO), IndiaGoogle Scholar
  26. Divakara B, Upadhyaya HD, Wani SP et al (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742CrossRefGoogle Scholar
  27. Diwani GIE, Rafei SAE, Hawash SI (2011) Ozone for phorbol esters removal from Egyptian Jatropha oil seed cake. Adv Appl Sci Res 2:221–232Google Scholar
  28. Edrisi SA, Dubey RK, Tripathi V et al (2015) Jatropha curcas L.: a crucified plant waiting for resurgence. Renew Sustain Energ Rev 41:855–862CrossRefGoogle Scholar
  29. Everson CS, Mengistu MG, Gush MB (2013) A field assessment of the agronomic performance and water use of Jatropha curcas in South Africa. Biomass Bioenergy 59:59–69CrossRefGoogle Scholar
  30. Fernández-Ãlvarez P, Vila J, Garrido JM et al (2007) Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige. J Hazard Mater 147:914–922PubMedCrossRefGoogle Scholar
  31. Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Res Forum 29:12–24CrossRefGoogle Scholar
  32. Galapia GA, Carandang WM, Vallesteros SF et al (2012) Heritability of and relationship among selected seed traits of three provenances of Jatropha curcas L. Forest Sci Technol 8:139–144CrossRefGoogle Scholar
  33. Ghorbani A, Bazooyar B, Shariati A et al (2011) A comparative study of combustion performance and emission of biodiesel blends and diesel in an experimental boiler. Appl Energy 88:4725–4732CrossRefGoogle Scholar
  34. Ghosh A, Chaudhary DR, Reddy MP et al (2007) Prospects for jatropha methyl ester (biodiesel) in India. Int J Environ Stud 64:659–674CrossRefGoogle Scholar
  35. Ginwal HS, Rawat PS, Srivastava RL (2004) Seed source variation in growth performance and oil yield of Jatropha curcas Linn. in Central India. Silvae Genet 53:186–191CrossRefGoogle Scholar
  36. Goel G, Makkar HPS, Francis G et al (2007) Phorbol esters: structure, biological activity and toxicity in animals. Int J Toxicol 26:279–288PubMedCrossRefGoogle Scholar
  37. Gogoi R, Niyogi UK, Tyagi AK (2014) Reduction of phorbol ester content in jatropha cake using high energy gamma radiation. J Radiat Res Appl Sci 7:305–309CrossRefGoogle Scholar
  38. Gomes TG, Hadi SIIA, Alves GSC et al (2018) Current strategies for the detoxification of Jatropha curcas seed cake: a review. J Agric Food Chem 66:2510–2522PubMedCrossRefGoogle Scholar
  39. Gopinathan M, Sudhakaran R (2010) Biofuels: opportunities and challenges in India. In Vitro Cell Dev Biol Plant 45:350–371CrossRefGoogle Scholar
  40. Grover A, Patade VY, Kumari M et al (2013) Omics approaches in biofuel production for green environment. In: Barh D, Zambare V, Azevedo V (eds) Omics: applications in biomedical, agricultural and environmental applications. CRC Press, Taylor & Francis, LLC, USA, pp 623–636CrossRefGoogle Scholar
  41. Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82CrossRefGoogle Scholar
  42. Haas W, Mittelbach M (2000) Detoxification experiments with the seed oil from Jatropha curcas L. Ind Crop Prod 12:111–118CrossRefGoogle Scholar
  43. Heller J (1996) Physic nut, Jatropha curcas L., promoting the conservation and use of underutilized and neglected crops (IPGRI). Biodivers Int 1:66Google Scholar
  44. Hendroko R, Liwang T, Salafudin et al (2013) The modification for increasing productivity at hydrolysis reactor with Jatropha curcas Linn. capsule husk as biomethane feedstocks at two stage digestion. Energy Procedia 32:47–54CrossRefGoogle Scholar
  45. Hendroko RS, Wahono SK, Praptiningsih et al (2014) The study of optimization hydrolysis substrate retention time and augmentation as an effort to increasing biogas productivity from Jatropha curcas Linn. capsule husk. Energy Procedia 47:255–262CrossRefGoogle Scholar
  46. Hidayat C, Hastuti P, Wardhani AK et al (2014) Method of phorbol ester degradation in Jatropha curcas L. seed cake using rice bran lipase. J Biosci Bioeng 117:372–374PubMedCrossRefGoogle Scholar
  47. Indian Railways Organization for Alternate Fuels (2013) A concept paper on alternate fuels for Indian Railways. Ministry of Railways, Government of India, New DelhiGoogle Scholar
  48. Joshi C, Mathur P, Khare SK (2011) Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour Technol 102:4815–4819PubMedCrossRefGoogle Scholar
  49. Kagathi DL, Mmopelwa G, Chanda R et al (2017) A review of the sustainability of Jatropha cultivation projects for biodiesel production in southern Africa: implications for energy policy in Botswana. Agric Ecosyst Environ 246:314–324CrossRefGoogle Scholar
  50. Kannoju B, Ganapathiwar S, Nunavath H et al (2017) Plausible exploitation of Jatropha de-oiled seed cake for lipase and phytase production and simultaneous detoxification by Candida parapsilosis isolated from poultry garbage. Bioresour Technol 225:215–224PubMedCrossRefGoogle Scholar
  51. Kaushik N, Kumar K, Kumar et al (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas) accessions. Biomass Bioenergy 31:497–502CrossRefGoogle Scholar
  52. King A, Montes LR, Clarke JC et al (2013) Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity. Plant Biotechnol J 11:986–996PubMedPubMedCentralCrossRefGoogle Scholar
  53. King AJ, Montes LR, Clarke JG et al (2015) Identification of QTL markers contributing to plant growth, oil yield and fatty acid composition in the oilseed crop Jatropha curcas L. Biotechnol Biofuels 8:1–17CrossRefGoogle Scholar
  54. Komariah LN, Arita S, Novia et al (2013) Effects of palm biodiesel blends on fuel consumption in fire tube boiler. Appl Mech Mater 391:93–97CrossRefGoogle Scholar
  55. Kumar S, Singh J, Nanoti SM et al (2012) A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India. Bioresour Technol 110:723–729PubMedCrossRefGoogle Scholar
  56. Kumari M, Grover A, Patade VY et al (2013) Development of EST-SSR markers through data mining and their use for genetic diversity study in Indian accessions of Jatropha curcas L.: a potential energy crop. Genes Genom 35:661–670CrossRefGoogle Scholar
  57. Lestari D, Mulder W, Sanders J (2010) Improving Jatropha curcas seed protein recovery by using counter current multistage extraction. Biochem Eng J 50:16–23CrossRefGoogle Scholar
  58. Li C, Luo L, Fu Q, Niu L, Xu Z-F (2014) Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuels plant Jatropha curcas. BMC Plant Biol 14:125PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li H, Tsuchimoto S, Harada K et al (2017) Genetic tracing of Jatropha curcas L. from its Mesoamerican origin to the world. Front Plant Sci 8:1539PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lim BY, Shamsudin R, Tuah BTH et al (2015) A review of processing and machinery for Jatropha curcas L. fruits and seeds in biodiesel production: harvesting, shelling, pretreatment and storage. Renew Sustain Energ Rev 52:991–1002CrossRefGoogle Scholar
  61. Lin J, Yan F, Tang L et al (2003) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24:241–246PubMedGoogle Scholar
  62. Madhaiyan M, Peng N, Te NS et al (2013) Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels 6:140PubMedPubMedCentralCrossRefGoogle Scholar
  63. Maghuly F, Laimer M (2013) Jatropha curcas, a biofuels crop: functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J 8:1172–1182PubMedPubMedCentralCrossRefGoogle Scholar
  64. Makkar HPS (2016) State-of-the-art on detoxification of Jatropha curcas products aimed for use as animal and fish feed: a review. Anim Feed Sci Technol 222:87–99CrossRefGoogle Scholar
  65. Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added co-products. Eur J Lipid Sci Technol 111:773–787CrossRefGoogle Scholar
  66. Makkar HPS, Becker K (2010) Are Jatropha curcas phorbol esters degraded by rumen microbes? J Sci Food Agric 90:1562–1565PubMedCrossRefGoogle Scholar
  67. Marasabessy A (2015) Valorization of jatropha fruit biomass for energy applications. PhD thesis, Wageningen UniversityGoogle Scholar
  68. Marasabessy A, Moeis MR, Sanders JPM et al (2011) Enhancing jatropha oil extraction yield from the kernels assisted by a xylan-degrading bacterium to preserve protein structure. Appl Microbiol Biotechnol 90:2027–2036PubMedPubMedCentralCrossRefGoogle Scholar
  69. Martinez-Herrera J, Siddhuraju P, Francis G et al (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96:80–89CrossRefGoogle Scholar
  70. Mastan S, Sudheer P, Rahman H et al (2012) Molecular characterization of intra-population variability of Jatropha curcas L. using DNA based molecular markers. Mol Biol Rep 39:4383–4390PubMedCrossRefGoogle Scholar
  71. Montes Osorio LR, Torres Salvador AF, Jongschaap REE et al (2014) High level of molecular and phenotypic biodiversity in Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant Biol 14:19CrossRefGoogle Scholar
  72. Najjar A, Abdullah N, Saad WZ et al (2014) Detoxification of toxic phorbol esters from Malaysian Jatropha curcas Linn. kernel by Trichoderma spp. and endophytic fungi. Int J Mol Sci 15:2274–2288PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nurcholis M, Sumarsih S, Brotodjojo RRR et al (2015) Environmental factors in the growth of jatropha at Potorono village, Yogyakarta. Sains Tanah J Soil Sci Agroclimatol 12:10–19CrossRefGoogle Scholar
  74. Oliveira SJC, Beltrão NEM (2010) Growth of physic nut in function of pruning and mineral fertilization. Rev Bras Ol Fibros 14:9–17Google Scholar
  75. Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15CrossRefGoogle Scholar
  76. Oskoueian E, Abdullah N, Ahmad S et al (2011) Bioactive compounds and biological activities of Jatropha curcas L. kernel meal extract. Int J Mol Sci 12:5955–5970PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ovando-Medina I, Espinosa GF, Nuñez FJ et al (2011) Genetic variation in Mexican Jatropha curcas L. estimated with seed oil fatty acids. J Oleo Sci 60:301–311PubMedCrossRefGoogle Scholar
  78. Ovando-Medina I, Adriano-Anaya L, Vásquez-Ovando A (2013) Genetic diversity of Jatropha curcas in southern Mexico. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha challenges for a new energy crop. Springer, New York, pp 263–299Google Scholar
  79. Pamidimarri SDV, Reddy MP (2014) Phylogeography and molecular diversity analysis of Jatropha curcas L. and the dispersal route revealed by RAPD, AFLP and nrDNA-ITS analysis. Mol Biol Rep 41:3225–3234CrossRefGoogle Scholar
  80. Pamidimarri SDV, Chattopadhyay B, Reddy MP (2008) Genetic divergence and phylogenetic analysis of genus Jatropha based on nuclear ribosomal DNA ITS sequence. Mol Biol Rep 36:1929–1935CrossRefGoogle Scholar
  81. Pandey VC, Singh K, Singh JS et al (2012) Jatropha curcas: a potential biofuel plant for sustainable environmental development. Renew Sustain Energ Rev 16:2870–2883CrossRefGoogle Scholar
  82. Patade VY, Khatri D, Kumar K et al (2014) RNAi mediated curcin precursor gene silencing in jatropha (Jatropha curcas L.). Mol Biol Rep 41:4305–4312PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pecina-Quintero V, Anaya JL, Zamarripa A et al (2011) Molecular characterization of Jatropha curcas L. genetic resources from Chiapas, México through AFLP markers. Biomass Bioenergy 35:1897–1905CrossRefGoogle Scholar
  84. Pecina-Quintero V, Anaya-Lopez JL, Zamarripa-Colmenero A et al (2014) Genetic structure of Jatropha curcas L. in Mexico and probable center of origin. Biomass Bioenergy 60:147–155CrossRefGoogle Scholar
  85. Pescie M, Borda M, Fedyszak P et al (2011) Effect of time and intensity of pruning on the yield and fruit quality of southern highbush blueberries (Vaccinium corymbosum) var. O’neal in Buenos Aires province. Rer Invest Agropecu 37:268–274Google Scholar
  86. Poddar T, Jagannath A, Almansoori A (2017) Use of reactive distillation in biodiesel production: a simulation-based comparison of energy requirements and profitability indicators. Appl Energy 185:985–997CrossRefGoogle Scholar
  87. Portugal-Pereira J, Nakatani J, Kurisu KH et al (2015) Comparative energy and environmental analysis of Jatropha bioelectricity versus biodiesel production in remote areas. Energy 83:2984–2293CrossRefGoogle Scholar
  88. Portugal-Pereira J, Nakatani J, Kurisu KH et al (2016) Life cycle assessment of conventional and optimised Jatropha biodiesel fuels. Renew Energy 86:585–593CrossRefGoogle Scholar
  89. Pradhan RC, Mishra S, Naik SN et al (2011) Oil expression from Jatropha seeds using a screw press expeller. Biosyst Eng 109:158–166CrossRefGoogle Scholar
  90. Praptiningsih GA, Liwang T, Salafudin N et al (2013) The study of two stages anaerobic digestion application and suitable biofilm as an effort to improve bio-gas productivity from Jatropha curcas Linn. capsule husk. Energy Procedia 32:84–89CrossRefGoogle Scholar
  91. Praptiningsih GA, Hendroko R, Wahono SK et al (2014) Optimization of concentration and EM4 augmentation for improving bio-gas productivity from Jatropha curcas Linn capsule husk. Int J Renew Energ Dev 3:73Google Scholar
  92. Punsuvon V, Nokkaew R (2013) Comparison of detoxification methods on phorbol esters in deoiled Jatropha curcas meal for animal feeds. J Chem Chem Eng 7:533–538Google Scholar
  93. Qin W, Ming-Xing H, Ying X et al (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357PubMedCrossRefPubMedCentralGoogle Scholar
  94. Rajona AM, Brueck H, Asch F (2011) Effect of pruning history on growth and dry mass partitioning of jatropha on a plantation site in Madagascar. Biomass Bioenergy 35:4892–4900CrossRefGoogle Scholar
  95. Rakshit KD, Darukeshwara J, Rathina Raj K et al (2008) Toxicity studies of detoxified Jatropha meal (Jatropha curcas) in rats. Food Chem Toxicol 46:3621–3625PubMedCrossRefPubMedCentralGoogle Scholar
  96. Ranade SA, Srivastava AP, Rana TS et al (2008) Easy assessment of diversity in Jatropha curcas L. plant using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540CrossRefGoogle Scholar
  97. Rao GR, Korwar GR, Shanker AK et al (2008) Genetic associations, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions. Trees 22:697–709CrossRefGoogle Scholar
  98. Raposo RS, Souza IGB, Veloso MEC et al (2014) Development of novel simple sequence repeat markers from a genomic sequence survey database and their application for diversity assessment in Jatropha curcas germplasm from Guatemala. Genet Mol Res 13:6099–6106PubMedCrossRefPubMedCentralGoogle Scholar
  99. Rosado TB, Laviola BG, Faria DA et al (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50:2372–2382CrossRefGoogle Scholar
  100. Rug M, Ruppel A (2000) Toxic activities of the plant Jatropha curcas against intermediate snail hosts and larvae of schistosomes. Trop Med Int Health 5:423–430PubMedCrossRefPubMedCentralGoogle Scholar
  101. Sabandar CW, Ahmat N, Jaafar FM et al (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 85:7–29PubMedCrossRefGoogle Scholar
  102. Sadubthummarak U, Parkpian P, Ruchirawat M et al (2013) Potential treatments to reduce phorbol esters levels in jatropha seed cake for improving the value added product. J Environ Sci Health B 48:974–982PubMedCrossRefPubMedCentralGoogle Scholar
  103. Salvador-Figueroa M, Magaña-Ramos J, Vázquez-Ovando J et al (2015) Genetic diversity and structure of Jatropha curcas L. in its centre of origin. Plant Genet Resour 13:9–17CrossRefGoogle Scholar
  104. Santos ONA, Folegatti MV, Lena BP et al (2016) Irrigation history and pruning effect on growth and yield of jatropha on a plantation in Southeastern Brazil. Afr J Agric Res 11:5080–5091CrossRefGoogle Scholar
  105. Sarin R, Sharma M, Sinharay S et al (2007) Jatropha-palm biodiesel blends: an optimum mix for Asia. Fuel 86:1365–1371CrossRefGoogle Scholar
  106. Shambhu VB, Bhattacharya TK, Chaudhary SK (2012) Compatibility of Jatropha oil bio-diesel and petro diesel as an engine fuel based on their characteristic fuel properties. Agric Mech Asia Afr Latin Am (AMA) Jpn 43:43–49Google Scholar
  107. Sharath BS, Mohankumar BV, Somashekar D (2014) Bio-detoxification of phorbol esters and other anti-nutrients of Jatropha curcas seed cake by fungal cultures using solid-state fermentation. Appl Biochem Biotechnol 172:2747–2757PubMedCrossRefPubMedCentralGoogle Scholar
  108. Singh RN, Vyas DK, Srivastava NSL et al (2008) SPERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renew Energy 33:1868–1873CrossRefGoogle Scholar
  109. Singh B, Singh K, Goel GS et al (2013) The field performance of some accessions of Jatropha curcas L. (biodiesel plant) on degraded sodic land in North India. Int J Green Energy 10:1026–1040CrossRefGoogle Scholar
  110. Singh K, Singh B, Verma SK et al (2014) Jatropha curcas: a ten year story from hope to despair. Renew Sustain Energy Rev 35:356–360CrossRefGoogle Scholar
  111. Singh YP, Nayak AK, Sharma DK et al (2015) Evaluation of Jatropha curcas genotypes for rehabilitation of degraded sodic lands. Land Degrad Dev 26:510–520CrossRefGoogle Scholar
  112. Smith W, Surland M (2013) Biodiesel intercity passenger rail revenue service test. Technical Report DOT/FRA/ORD-13/43. US Department of Transportation Federal Railroad AdministrationGoogle Scholar
  113. Srivastava P, Behera SK, Gupta J et al (2011) Growth performance, variability in yield traits and oil content of selected accessions of Jatropha curcas L. growing in a large scale plantation site. Biomass Bioenergy 35:3936–3942CrossRefGoogle Scholar
  114. Statistica (2018) Leading biodiesel producers worldwide in 2016, by countries (in billion liters). https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/
  115. Sun QB, Li LF, Li Y et al (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871CrossRefGoogle Scholar
  116. Supranto S (2013) Palm oil transesterification processing to biodiesel using a combine of ultrasonic and chemical catalyst. Pertanika J Sci Technol 21:567–580Google Scholar
  117. Tatikonda L, Wani PS, Kannan S et al (2009) AFLP based molecular characterization of an elite germplasm collection of Jatropha curcas L., biofuel plant. Plant Sci 176:505–513PubMedCrossRefGoogle Scholar
  118. Terren M, Saverys S, de Haveskercke PJ et al (2012) Attempted cultivation of Jatropha curcas L. in the lower Senegal River Valley: story of a failure. Tropicultura 30:204–208Google Scholar
  119. Tikkoo A, Yadav SS, Kaushik N (2013) Effect of irrigation, nitrogen and potassium on seed yield and oil content of Jatropha curcas in coarse textured soils of northwest India. Soil Tillage Res 134:142–146CrossRefGoogle Scholar
  120. Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acid: an optimized process. Biomass Bioenergy 31:569–575CrossRefGoogle Scholar
  121. Tjeuw J, Slingerland M, Giller K (2015) Relationships among Jatropha curcas seed yield and vegetative plant components under different management and cropping systems in Indonesia. Biomass Bioenergy 80:128–139CrossRefGoogle Scholar
  122. Van Eijck J, Romjin H, Balema A et al (2014a) Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects. Renew Sustain Energy Rev 32:869–889CrossRefGoogle Scholar
  123. Van Eijck J, Romjin H, Smeets E et al (2014b) Comparative analysis of key socio-economic and environmental impacts of smallholder and plantation based jatropha biofuels production systems in Tanzania. Biomass Bioenergy 61:25–45CrossRefGoogle Scholar
  124. Vasquez-Mayorga M, Fuchs EJ, Hernandez EJ et al (2017) Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica. Peer J 5:e2931PubMedCrossRefPubMedCentralGoogle Scholar
  125. Von Maltitz GP, Gasparatos A, Fabricius C et al (2016) Jatropha cultivation in Malawi and Mozambique: impact on ecosystem services, local human well-being, and poverty alleviation. Ecol Soc 21:3CrossRefGoogle Scholar
  126. Wang XH, Ou L, Fu LL et al (2013) Detoxification of Jatropha curcas kernel cake by a novel Streptomyces fumicarius strain. J Hazard Mater 260:238–246PubMedCrossRefPubMedCentralGoogle Scholar
  127. Yang J, Golovitchev VI, Lurbe PR et al (2012) Chemical kinetic study of nitrogen oxides formation trends in biodiesel combustion. Int J Chem Eng 2012:898742CrossRefGoogle Scholar
  128. Yarborough DE (2006) Blueberry pruning and pollination. In: Childers NF (ed) Blueberries for growers, gardeners, promoters. Norman F Childers Hortic Pub, Gainesville, pp 75–83Google Scholar
  129. Yi C, Zhang S, Liu X et al (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol 10:259PubMedPubMedCentralCrossRefGoogle Scholar
  130. Yu M, Saga K, Imou K, Hasegawa F, Kaizu Y, Tosa K, Kato S (2016) Solid fuel production from jatropha cake by heat-press treatment. Eng Agric Environ Food 9:15–20CrossRefGoogle Scholar
  131. Yue GH, Lo LC, Sun F et al (2014) No variation at 29 microsatellites in the genome of Jatropha curcas. J Genomics 2:59–63PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yunping B, Bui H, Eunice Y et al (2012) Light induced degradation of phorbol esters. Ecotoxicol Environ Saf 84:268–273PubMedCrossRefGoogle Scholar
  133. Zhang X, Yang Z, Liang J et al (2016) Detoxification of Jatropha curcas seed cake in solid-state fermentation of newly isolated endophytic strain and nutrition assessment for its potential utilizations. Int Biodeterior Biodegrad 109:202–210CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Atul Grover
    • 1
  • Sweta Singh
    • 1
  • Abhinav Singh
    • 1
  • Madhu Bala
    • 1
  1. 1.Defence Institute of Bio-Energy Research, Defence Research and Development OrganizationHaldwaniIndia

Personalised recommendations