Advertisement

Amyloids Are Novel Cell-Adhesive Matrices

  • Reeba S. Jacob
  • Subhadeep Das
  • Namrata Singh
  • Komal Patel
  • Debalina Datta
  • Shamik Sen
  • Samir K. MajiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1112)

Abstract

Amyloids are highly ordered peptide/protein aggregates traditionally associated with multiple human diseases including neurodegenerative disorders. However, recent studies suggest that amyloids can also perform several biological functions in organisms varying from bacteria to mammals. In many lower organisms, amyloid fibrils function as adhesives due to their unique surface topography. Recently, amyloid fibrils have been shown to support attachment and spreading of mammalian cells by interacting with the cell membrane and by cell adhesion machinery activation. Moreover, similar to cellular responses on natural extracellular matrices (ECMs), mammalian cells on amyloid surfaces also use integrin machinery for spreading, migration, and differentiation. This has led to the development of biocompatible and implantable amyloid-based hydrogels that could induce lineage-specific differentiation of stem cells. In this chapter, based on adhesion of both lower organisms and mammalian cells on amyloid nanofibrils, we posit that amyloids could have functioned as a primitive extracellular matrix in primordial earth.

Keywords

Amyloids Protein aggregates Cell adhesion Extracellular matrix Tissue engineering 

Notes

Acknowledgments

The authors wish to acknowledge DBT (BT/PR9797/NNT/28/774/2014), Government of India, and Wadhwani Research Center for Bioengineering (WRCB) for their financial support.

References

  1. Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26(1):85–123PubMedGoogle Scholar
  2. Anoop A, Ranganathan S, Das Dhaked B, Jha NN, Pratihar S, Ghosh S, Sahay S, Kumar S, Das S, Kombrabail M, Agarwal K, Jacob RS, Singru P, Bhaumik P, Padinhateeri R, Kumar A, Maji SK (2014) Elucidating the role of disulfide bond on amyloid formation and fibril reversibility of somatostatin-14: relevance to its storage and secretion. J Biol Chem 289(24):16884–16903.  https://doi.org/10.1074/jbc.M114.548354 PubMedPubMedCentralGoogle Scholar
  3. Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, Burdick JA, Chen CS (2015) Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater 14(12):1262–1268.  https://doi.org/10.1038/nmat4444 PubMedPubMedCentralGoogle Scholar
  4. Barlow DE, Dickinson GH, Orihuela B, Kulp JL, Rittschof D, Wahl KJ (2010) Characterization of the adhesive plaque of the barnacle Balanus amphitrite: Amyloid-Like Nanofibrils are a major component. Langmuir 26(9):6549–6556.  https://doi.org/10.1021/la9041309 PubMedGoogle Scholar
  5. Benoit DS, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7(10):816–823.  https://doi.org/10.1038/nmat2269 PubMedPubMedCentralGoogle Scholar
  6. Bolisetty S, Adamcik J, Heier J, Mezzenga R (2012) Amyloid directed synthesis of titanium dioxide nanowires and their applications in hybrid photovoltaic devices. Adv Funct Mat 22(16):3424–3428Google Scholar
  7. Brader ML, Sukumar M, Pekar AH, McClellan DS, Chance RE, Flora DB, Cox AL, Irwin L, Myers SR (2002) Hybrid insulin cocrystals for controlled release delivery. Nat Biotechnol 20(8):800–804PubMedGoogle Scholar
  8. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511PubMedGoogle Scholar
  9. Calamai M, Kumita JR, Mifsud J, Parrini C, Ramazzotti M, Ramponi G, Taddei N, Chiti F, Dobson CM (2006) Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes. Biochemistry 45(42):12806–12815PubMedGoogle Scholar
  10. Carny O, Gazit E (2005) A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J 19(9):1051–1055 doi:19/9/1051 [pii]111096/fj.04-3256hypPubMedGoogle Scholar
  11. Carroll A, Yang W, Ye Y, Simmons R, Yang JJ (2006) Amyloid fibril formation by a domain of rat cell adhesion molecule. Cell Biochem Biophys 44(2):241–249.  https://doi.org/10.1385/cbb:44:2:241 PubMedGoogle Scholar
  12. Carrotta R, Manno M, Bulone D, Martorana V, San Biagio PL (2005) Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. J Biol Chem 280(34) (0021–9258 (Print)):30001–30008Google Scholar
  13. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295(5556):851–855.  https://doi.org/10.1126/science.1067484 295/5556/851 [pii]PubMedPubMedCentralGoogle Scholar
  14. Chaudhuri O (2017) Viscoelastic hydrogels for 3D cell culture. Biomater Sci 5(8):1480–1490.  https://doi.org/10.1039/c7bm00261k PubMedGoogle Scholar
  15. Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC, Huebsch N, Mooney DJ (2015) Substrate stress relaxation regulates cell spreading. Nat Commun 6:6364.  https://doi.org/10.1038/ncomms7365 PubMedPubMedCentralGoogle Scholar
  16. Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee HP, Lippens E, Duda GN, Mooney DJ (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15(3):326–334.  https://doi.org/10.1038/nmat4489 PubMedGoogle Scholar
  17. Chernoff YO (2001) Mutation processes at the protein level: is Lamarck back? Mutat Res 488(1):39–64PubMedGoogle Scholar
  18. Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed Engl 47(22):4062–4069.  https://doi.org/10.1002/anie.200703133 PubMedGoogle Scholar
  19. Chien P, Weissman JS, DePace AH (2004) Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 73:617–656.  https://doi.org/10.1146/annurev.biochem.72.121801.161837 PubMedGoogle Scholar
  20. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366PubMedGoogle Scholar
  21. Choi Y, Chung H, Jung H, Couchman JR, Oh ES (2011) Syndecans as cell surface receptors: unique structure equates with functional diversity. Matrix Biol 30(2):93–99PubMedGoogle Scholar
  22. Cohen FE, Prusiner SB (1998) Pathologic conformations of prion proteins. Annu Rev Biochem 67:793–819PubMedGoogle Scholar
  23. Das S, Kumar R, Jha NN, Maji SK (2017) Controlled exposure of bioactive growth factor in 3D amyloid hydrogel for stem cells differentiation. Adv Healthc Mater 6(18).  https://doi.org/10.1002/adhm.201700368 Google Scholar
  24. Das S, Zhou K, Ghosh D, Jha NN, Singh PK, Jacob RS, Bernard CC, Finkelstein DI, Forsythe JS, Maji SK (2016) Implantable amyloid hydrogels for promoting stem cell differentiation to neurons. Npg Asia Materials 8:e304.  https://doi.org/10.1038/am.2016.116 Google Scholar
  25. Dennes TJ, Hunt GC, Schwarzbauer JE, Schwartz J (2007) High-yield activation of scaffold polymer surfaces to attach cell adhesion molecules. J Am Chem Soc (0002-7863 (Print)). doi:D - NLM: NIHMS61762Google Scholar
  26. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203PubMedPubMedCentralGoogle Scholar
  27. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004a) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86(1 Pt 1):617–628.  https://doi.org/10.1016/s0006-3495(04)74140-5 PubMedPubMedCentralGoogle Scholar
  28. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004b) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887.  https://doi.org/10.1083/jcb.200405004 PubMedPubMedCentralGoogle Scholar
  29. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689.  https://doi.org/10.1016/j.cell.2006.06.044 S0092-8674(06)00961-5 [pii]PubMedGoogle Scholar
  30. Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274PubMedGoogle Scholar
  31. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4(1).  https://doi.org/10.1371/journal.pbio.0040006 PubMedCentralGoogle Scholar
  32. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid–from bacteria to humans. Trends Biochem Sci 32(5):217–224.  https://doi.org/10.1016/j.tibs.2007.03.003 PubMedGoogle Scholar
  33. Fradinger EA, Maji SK, Lazo ND, Teplow DB (2005) Studying amyloid beta-protein assembly. In: WXaH X (ed) Amyloid precursor protein. CRC Pres, Boca Ration/London/New York/Washington, DC, pp 83–110Google Scholar
  34. Gazit E (2007) Use of biomolecular templates for the fabrication of metal nanowires. FEBS J 274(2):317–322 doi:EJB5605 [pii]371111/j.1742-4658.2006.05605.xPubMedGoogle Scholar
  35. Gebbink MF, Claessen D, Bouma B, Dijkhuizen L, Wosten HA (2005) Amyloids–a functional coat for microorganisms. Nat Rev Microbiol 3(4):333–341 doi:nrmicro1127 [pii]391038/nrmicro1127PubMedGoogle Scholar
  36. Ghosh D, Dutta P, Chakraborty C, Singh PK, Anoop A, Jha NN, Jacob RS, Mondal M, Mankar S, Das S, Malik S, Maji SK (2014) Complexation of amyloid fibrils with charged conjugated polymers. Langmuir 30(13):3775–3786.  https://doi.org/10.1021/la404739f PubMedGoogle Scholar
  37. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081.  https://doi.org/10.1126/science.1191035 PubMedPubMedCentralGoogle Scholar
  38. Glimcher MJ, Bonar LC, Daniel EJ (1961) The molecular structure of the protein matrix of bovine dental enamel. J Mol Biol 3:541–546PubMedGoogle Scholar
  39. Glimcher MJ, Levine PT, Bonar LC (1965) Morphological and biochemical considerations in structural studies of the organic matrix of enamel. J Ultrastruct Res 13(3):281–295PubMedGoogle Scholar
  40. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501PubMedGoogle Scholar
  41. Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107(8):3487–3492.  https://doi.org/10.1073/pnas.0915166107 PubMedPubMedCentralGoogle Scholar
  42. Gras SL (2009) Surface- and solution-based assembly of amyloid fibrils for biomedical and nanotechnology applications. Adv Chem Eng 35:161–209Google Scholar
  43. Gras SL, Tickler AK, Squires AM, Devlin GL, Horton MA, Dobson CM, MacPhee CE (2008) Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials 29(11):1553–1562PubMedGoogle Scholar
  44. Greenwald J, Friedmann MP, Riek R (2016) Amyloid aggregates arise from amino acid condensations under prebiotic conditions. Angew Chem Int Ed Engl 55(38):11609–11613.  https://doi.org/10.1002/anie.201605321 PubMedGoogle Scholar
  45. Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18(10):1244–1260.  https://doi.org/10.1016/j.str.2010.08.009 PubMedGoogle Scholar
  46. Greenwald J, Riek R (2012) On the possible amyloid origin of protein folds. J Mol Biol 421(4–5):417–426.  https://doi.org/10.1016/j.jmb.2012.04.015 PubMedGoogle Scholar
  47. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112PubMedGoogle Scholar
  48. Hammer ND, Wang X, McGuffie BA, Chapman MR (2008) Amyloids: friend or foe? J Alzheimers Dis 13(4):407–419PubMedPubMedCentralGoogle Scholar
  49. Han TH, Lee WJ, Lee DH, Kim JE, Choi EY, Kim SO (2010) Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater 22(18):2060–2064.  https://doi.org/10.1002/adma.200903221 PubMedGoogle Scholar
  50. Hardy J, Selkoe DJ (2002) Medicine – The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedGoogle Scholar
  51. Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407PubMedGoogle Scholar
  52. Hiramatsu H, Kitagawa T (2005) FT-IR approaches on amyloid fibril structure. Biochim Biophys Acta 1753(1):100–107.  https://doi.org/10.1016/j.bbapap.2005.07.008 PubMedGoogle Scholar
  53. Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology (N Y) 13(6):565–576Google Scholar
  54. Jacob RS, Das S, Ghosh S, Anoop A, Jha NN, Khan T, Singru P, Kumar A, Maji SK (2016a) Amyloid formation of growth hormone in presence of zinc: relevance to its storage in secretory granules. Sci Rep 6:23370.  https://doi.org/10.1038/srep23370 PubMedPubMedCentralGoogle Scholar
  55. Jacob RS, George E, Singh PK, Salot S, Anoop A, Jha NN, Sen S, Maji SK (2016b) Cell adhesion on amyloid fibrils lacking integrin recognition motif. J Biol Chem 291(10):5278–5298.  https://doi.org/10.1074/jbc.M115.678177 PubMedPubMedCentralGoogle Scholar
  56. Jacob RS, Ghosh D, Singh PK, Basu SK, Jha NN, Das S, Sukul PK, Patil S, Sathaye S, Kumar A, Chowdhury A, Malik S, Sen S, Maji SK (2015) Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 54(0):97–105PubMedGoogle Scholar
  57. Jacob RS, Sen S, Maji SK (2016c) Adhesion of Human Mesenchymal Stem Cells and Differentiation of SH-SY5Y Cells on Amyloid Fibrils. Macromol Symp 369(1):35–42Google Scholar
  58. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie. Cell 73:1055–1058PubMedGoogle Scholar
  59. Jen A, Madorin K, Vosbeck K, Arvinte T, Merkle HP (2002) Transforming growth factor b-3 crystals as reservoirs for slow release of active TGF-b3. J Control Release 78(1–3):25–34PubMedGoogle Scholar
  60. Jha NN, Anoop A, Ranganathan S, Mohite GM, Padinhateeri R, Maji SK (2013) Characterization of amyloid formation by glucagon-like peptides: role of basic residues in heparin-mediated aggregation. Biochemistry 52(49):8800–8810.  https://doi.org/10.1021/bi401398k PubMedGoogle Scholar
  61. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422–433.  https://doi.org/10.1038/nrc1094 PubMedGoogle Scholar
  62. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489PubMedGoogle Scholar
  63. Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A (2009) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30(29):5433–5444.  https://doi.org/10.1016/j.biomaterials.2009.06.042 PubMedPubMedCentralGoogle Scholar
  64. Kirkitadze MD, Bitan G, Teplow DB (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69(5):567–577PubMedGoogle Scholar
  65. Klein EA, Yin L, Kothapalli D, Castagnino P, Byfield FJ, Xu T, Levental I, Hawthorne E, Janmey PA, Assoian RK (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19(18):1511–1518.  https://doi.org/10.1016/j.cub.2009.07.069 PubMedPubMedCentralGoogle Scholar
  66. Knowles TP, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5(3):204–207 doi:nnano.2010.26 [pii]711038/nnano.2010.26PubMedPubMedCentralGoogle Scholar
  67. Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15(6):384–396.  https://doi.org/10.1038/nrm3810 PubMedGoogle Scholar
  68. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation [Review]. Trends Cell Biol 10(12):524–530PubMedGoogle Scholar
  69. Langer R (1990) New methods of drug delivery. Science 249(4976):1527–1533PubMedGoogle Scholar
  70. Langer R (1998) Drug delivery and targeting. Nature 392(6679 Suppl):5–10PubMedGoogle Scholar
  71. Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33(2):94–101 doi:ar9800993 [pii]PubMedGoogle Scholar
  72. Langer R (2001) Drug delivery. Drugs on target. Science 293(5527):58–59PubMedGoogle Scholar
  73. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492.  https://doi.org/10.1038/nature02388 nature02388 [pii]PubMedGoogle Scholar
  74. Lee KY, Peters MC, Anderson KW, Mooney DJ (2000) Controlled growth factor release from synthetic extracellular matrices. Nature 408(6815):998–1000.  https://doi.org/10.1038/35050141 PubMedGoogle Scholar
  75. Leman L, Orgel L, Ghadiri MR (2004) Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306(5694):283–286.  https://doi.org/10.1126/science.1102722 PubMedGoogle Scholar
  76. Leung VY, Aladin DM, Lv F, Tam V, Sun Y, Lau RY, Hung SC, Ngan AH, Tang B, Lim CT, Wu EX, Luk KD, Lu WW, Masuda K, Chan D, Cheung KM (2014) Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair. Stem Cells 32(8):2164–2177.  https://doi.org/10.1002/stem.1717 PubMedGoogle Scholar
  77. LeVine H III (1993) Thioflavine T interaction with synthetic Alzheimer’s disease b-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410PubMedPubMedCentralGoogle Scholar
  78. Li C, Adamcik J, Mezzenga R (2012) Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol 7(7):421–427.  https://doi.org/10.1038/nnano.2012.62 PubMedGoogle Scholar
  79. Li C, Born AK, Schweizer T, Zenobi-Wong M, Cerruti M, Mezzenga R (2014) Amyloid-hydroxyapatite bone biomimetic composites. Adv Mater 26(20):3207–3212.  https://doi.org/10.1002/adma.201306198 PubMedGoogle Scholar
  80. Li C, Mezzenga R (2013) The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology. Nanoscale 5(14):6207–6218.  https://doi.org/10.1039/c3nr01644g PubMedGoogle Scholar
  81. Mahoney MJ, Anseth KS (2006) Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27(10):2265–2274.  https://doi.org/10.1016/j.biomaterials.2005.11.007 PubMedGoogle Scholar
  82. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009a) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325(5938):328–332.  https://doi.org/10.1126/science.1173155 1173155 [pii]PubMedPubMedCentralGoogle Scholar
  83. Maji SK, Schubert D, Rivier C, Lee S, Rivier JE, Riek R (2008) Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol 6(2):e17PubMedPubMedCentralGoogle Scholar
  84. Maji SK, Wang L, Greenwald J, Riek R (2009b) Structure-activity relationship of amyloid fibrils. FEBS Lett 583(16):2610–2617.  https://doi.org/10.1016/j.febslet.2009.07.003 S0014-5793(09)00528-6 [pii]PubMedGoogle Scholar
  85. Mankar S, Anoop A, Sen S, Maji SK (2011) Nanomaterials: amyloids reflect their brighter side. Nano Rev 2(6032)Google Scholar
  86. Maurer-Stroh S, Debulpaep M, Kuemmerer N, de la Paz ML, Martins IC, Reumers J, Morris KL, Copland A, Serpell L, Serrano L, Schymkowitz JWH, Rousseau F (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237.  https://doi.org/10.1038/nmeth.1432 PubMedGoogle Scholar
  87. Maury CP (2009) The emerging concept of functional amyloid. J Intern Med 265(3):329–334PubMedGoogle Scholar
  88. Maury CPJ (2015) Origin of life. Primordial genetics: information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers. J Theor Biol 382(Supplement C):292–297PubMedGoogle Scholar
  89. McKinnon DD, Domaille DW, Brown TE, Kyburz KA, Kiyotake E, Cha JN, Anseth KS (2014) Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels. Soft Matter 10(46):9230–9236.  https://doi.org/10.1039/c4sm01365d PubMedPubMedCentralGoogle Scholar
  90. Meersman F, Dobson CM (2006) Probing the pressure-temperature stability of amyloid fibrils provides new insights into their molecular properties. Biochim Biophys Acta 1764(3):452–460PubMedGoogle Scholar
  91. Meital Reches EG (2006) Molecular self-assembly of peptide nanostructures: mechanism of association and potential uses. Curr Nanosci 2(2):105–111Google Scholar
  92. Mesquida P, Riener CK, MacPhee CE, McKendry RA (2007) Morphology and mechanical stability of amyloid-like peptide fibrils. J Mater Sci Mater Med 18(7):1325–1331.  https://doi.org/10.1007/s10856-006-0075-0 PubMedGoogle Scholar
  93. Michod RE (2007) Evolution of individuality during the transition from unicellular to multicellular life. Proc Natl Acad Sci U S A 104(Suppl 1):8613–8618.  https://doi.org/10.1073/pnas.0701489104 PubMedPubMedCentralGoogle Scholar
  94. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529PubMedGoogle Scholar
  95. Mostaert AS, Higgins MJ, Fukuma T, Rindi F, Jarvis SP (2006) Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J Biol Phys 32(5):393–401.  https://doi.org/10.1007/s10867-006-9023-y PubMedPubMedCentralGoogle Scholar
  96. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20(1):33–43.  https://doi.org/10.1016/j.tig.2003.11.004 PubMedGoogle Scholar
  97. Naiki H, Hashimoto N, Suzuki S, Kimura H, Nakakuki K, Gejyo F (1997) Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid-Int J Exp Clin Investig 4(4):223–232Google Scholar
  98. Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16(2):260–265PubMedGoogle Scholar
  99. Nilsson KP (2009) Small organic probes as amyloid specific ligands–past and recent molecular scaffolds. FEBS Lett 583(16):2593–2599.  https://doi.org/10.1016/j.febslet.2009.04.016 PubMedGoogle Scholar
  100. Nisbet DR, Williams RJ (2012) Self-assembled peptides: characterisation and in vivo response. Biointerphases 7(1–4):2.  https://doi.org/10.1007/s13758-011-0002-x PubMedGoogle Scholar
  101. Osherovich LZ, Weissman JS (2002) The utility of prions. Dev Cell 2(2):143–151PubMedGoogle Scholar
  102. Otzen D, Nielsen PH (2008) We find them here, we find them there: functional bacterial amyloid. Cell Mol Life Sci 65(6):910–927.  https://doi.org/10.1007/s00018-007-7404-4 PubMedGoogle Scholar
  103. Ozbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC (2010) The evolution of extracellular matrix. Mol Biol Cell 21(24):4300–4305.  https://doi.org/10.1091/mbc.E10-03-0251 PubMedPubMedCentralGoogle Scholar
  104. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254.  https://doi.org/10.1016/j.ccr.2005.08.010 PubMedGoogle Scholar
  105. Patterson J, Martino MM, Hubbell JA (2010) Biomimetic materials in tissue engineering. Mater Today 13(1–2):14–22Google Scholar
  106. Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94(25):13661–13665PubMedPubMedCentralGoogle Scholar
  107. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360Google Scholar
  108. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure-activity analyses of b-amyloid peptides: Contributions of the b25-35 region to aggregation and neurotoxicity. J Neurochem 64(1):253–265PubMedGoogle Scholar
  109. Ramsook CB, Tan C, Garcia MC, Fung R, Soybelman G, Henry R, Litewka A, O’eally S, Otoo HN, Khalaf RA, Dranginis AM, Gaur NK, Klotz SA, Rauceo JM, Jue CK, Lipke PN (2010) Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell 9(3):393–404PubMedPubMedCentralGoogle Scholar
  110. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627PubMedGoogle Scholar
  111. Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1(3):195–200.  https://doi.org/10.1038/nnano.2006.139 nnano.2006.139 [pii]PubMedGoogle Scholar
  112. Reinhard J, Brosicke N, Theocharidis U, Faissner A (2016) The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol 81(Pt A):174–183.  https://doi.org/10.1016/j.biocel.2016.05.002 PubMedGoogle Scholar
  113. Reynolds NP, Charnley M, Bongiovanni MN, Hartley PG, Gras SL (2015) Biomimetic topography and chemistry control cell attachment to amyloid fibrils. Biomacromolecules 16(5):1556–1565.  https://doi.org/10.1021/acs.biomac.5b00114 PubMedGoogle Scholar
  114. Reynolds NP, Charnley M, Mezzenga R, Hartley PG (2014) Engineered lysozyme amyloid fibril networks support cellular growth and spreading. Biomacromolecules 15(2):599–608.  https://doi.org/10.1021/bm401646x PubMedGoogle Scholar
  115. Reynolds NP, Styan KE, Easton CD, Li Y, Waddington L, Lara C, Forsythe JS, Mezzenga R, Hartley PG, Muir BW (2013) Nanotopographic surfaces with defined surface chemistries from amyloid fibril networks can control cell attachment. Biomacromolecules 14(7):2305–2316PubMedGoogle Scholar
  116. Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3(1):a004978.  https://doi.org/10.1101/cshperspect.a004978 PubMedPubMedCentralGoogle Scholar
  117. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53PubMedGoogle Scholar
  118. Rufo CM, Moroz YS, Moroz OV, Stohr J, Smith TA, Hu X, Degrado WF, Korendovych IV (2014) Short peptides self-assemble to produce catalytic amyloids. Nat Chem 6(4):303–309.  https://doi.org/10.1038/nchem.1894 PubMedPubMedCentralGoogle Scholar
  119. Santiago LY, Nowak RF, Peter Rubin J, Marra KG (2006) Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 15(0142–9612 (Print)):2962–2969Google Scholar
  120. Sasso L, Suei S, Domigan L, Healy J, Nock V, Williams MA, Gerrard JA (2014) Versatile multi-functionalization of protein nanofibrils for biosensor applications. Nanoscale 6(3):1629–1634.  https://doi.org/10.1039/c3nr05752f PubMedGoogle Scholar
  121. Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H, Lindquist SL (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A 100(8):4527–4532PubMedPubMedCentralGoogle Scholar
  122. Schwendinger MG, Rode BM (1992) Investigations on the mechanism of the salt-induced peptide formation. Orig Life Evol Biosphere: J Int Soc Study Orig Life 22(6):349–359Google Scholar
  123. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289(5483):1317–1321PubMedGoogle Scholar
  124. Simitzi C, Ranella A, Stratakis E (2017) Controlling the morphology and outgrowth of nerve and neuroglial cells: the effect of surface topography. Acta Biomater 51:21–52.  https://doi.org/10.1016/j.actbio.2017.01.023 PubMedGoogle Scholar
  125. Smith DK (2010) Supramolecular gels: building bridges. Nat Chem 2(3):162–163.  https://doi.org/10.1038/nchem.566 PubMedGoogle Scholar
  126. Smith JF, Knowles TP, Dobson CM, Macphee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci U S A 103(43):15806–15811PubMedPubMedCentralGoogle Scholar
  127. Solomon JP, Bourgault S, Powers ET, Kelly JW (2011) Heparin binds 8 kDa gelsolin cross-beta-sheet oligomers and accelerates amyloidogenesis by hastening fibril extension. Biochemistry 50(13):2486–2498.  https://doi.org/10.1021/bi101905n PubMedPubMedCentralGoogle Scholar
  128. Sullan RM, Gunari N, Tanur AE, Chan Y, Dickinson GH, Orihuela B, Rittschof D, Walker GC (2009) Nanoscale structures and mechanics of barnacle cement. Biofouling 25(3):263–275.  https://doi.org/10.1080/08927010802688095 PubMedGoogle Scholar
  129. Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159PubMedGoogle Scholar
  130. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739PubMedGoogle Scholar
  131. Sutherland JD (2017) Opinion: studies on the origin of life — the end of the beginning. Nat Rev Chem 1:0012.  https://doi.org/10.1038/s41570-016-0012 Google Scholar
  132. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104.  https://doi.org/10.1126/science.1240104 PubMedPubMedCentralGoogle Scholar
  133. Tanaka H, Herland A, Lindgren LJ, Tsutsui T, Andersson MR, Inganas O (2008) Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer. Nano Lett 8(9):2858–2861.  https://doi.org/10.1021/nl801510z PubMedGoogle Scholar
  134. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11(7):642–649.  https://doi.org/10.1038/nmat3339 PubMedGoogle Scholar
  135. True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407(6803):477–483PubMedGoogle Scholar
  136. Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69(10):4167–4174.  https://doi.org/10.1158/0008-5472.can-08-4859 PubMedPubMedCentralGoogle Scholar
  137. Uptain SM, Lindquist S (2002) Prions as protein-based genetic elements. Annu Rev Microbiol 56:703–741PubMedGoogle Scholar
  138. Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate – Inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277(14):11970–11978PubMedGoogle Scholar
  139. van Oosten AS, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep 6:19270.  https://doi.org/10.1038/srep19270
  140. Vargas P, Barbier L, Saez PJ, Piel M (2017) Mechanisms for fast cell migration in complex environments. Curr Opin Cell Biol 48:72–78.  https://doi.org/10.1016/j.ceb.2017.04.007 PubMedGoogle Scholar
  141. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid b protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539PubMedGoogle Scholar
  142. Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP (2012) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24(31):4285–4290.  https://doi.org/10.1002/adma.201200846 PubMedGoogle Scholar
  143. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526PubMedGoogle Scholar
  144. Westermark GT, Johnson KH, Westermark P (1999) Staining methods for identification of amyloid in tissue. Methods Enzymol 309:3–25PubMedGoogle Scholar
  145. Winer JP, Oake S, Janmey PA (2009) Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS One 4(7):e6382.  https://doi.org/10.1371/journal.pone.0006382 PubMedPubMedCentralGoogle Scholar
  146. Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P (2009) Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 20(8):931–941.  https://doi.org/10.1016/j.semcdb.2009.08.005 Google Scholar
  147. Yan H, Nykanen A, Ruokolainen J, Farrar D, Gough JE, Saiani A, Miller AF (2008) Thermo-reversible protein fibrillar hydrogels as cell scaffolds. Faraday Discuss 139:71–84 discussion 105–128, 419–120PubMedGoogle Scholar
  148. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34.  https://doi.org/10.1002/cm.20041 PubMedGoogle Scholar
  149. Zhang S (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339PubMedGoogle Scholar
  150. Zhang S, Marini DM, Hwang W, Santoso S (2002) Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 6(6):865–871 doi:S1367593102003915 [pii]PubMedGoogle Scholar
  151. Zurdo J, Guijarro JI, Dobson CM (2001) Preparation and characterization of purified amyloid fibrils. J Am Chem Soc 123(33):8141–8142PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Reeba S. Jacob
    • 1
  • Subhadeep Das
    • 1
  • Namrata Singh
    • 1
  • Komal Patel
    • 1
  • Debalina Datta
    • 1
  • Shamik Sen
    • 1
  • Samir K. Maji
    • 1
    Email author
  1. 1.Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations