Advertisement

Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle

  • Devashish DwivediEmail author
  • Mahak SharmaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1112)

Abstract

Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.

Keywords

Dynein Dynactin Adaptor Kinetochore Hook2 Cell cycle Mitotic spindle 

Notes

Acknowledgments

D.D. acknowledges financial support from the Council of Scientific and Industrial Research (CSIR)-University Grants Commission (UGC) and IISER Mohali. M.S. acknowledges financial support from the Wellcome Trust/Department of Biotechnology (DBT) India Alliance [grant number IA/I/12/1/500523] and IISER Mohali. M.S. is a recipient of the Wellcome Trust/DBT India Alliance Intermediate Fellowship and SERB Women Excellence Award.

Contributions

D.D. reviewed the literature and wrote the manuscript. M.S. helped in literature review and in writing and editing the manuscript. The authors declare no competing financial interests.

References

  1. Aridor M, Hannan LA (2000) Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic 1:836–851PubMedCrossRefGoogle Scholar
  2. Aridor M, Hannan LA (2002) Traffic jams II: an update of diseases of intracellular transport. Traffic 3:781–790PubMedCrossRefGoogle Scholar
  3. Aumais JP, Williams SN, Luo W, Nishino M, Caldwell KA, Caldwell GA, Lin S-H, Yu-Lee L-Y (2003) Role for NudC, a dynein-associated nuclear movement protein, in mitosis and cytokinesis. J Cell Sci 116:1991PubMedCrossRefGoogle Scholar
  4. Barisic M, Geley S (2011) Spindly switch controls anaphase: spindly and RZZ functions in chromosome attachment and mitotic checkpoint control. Cell Cycle 10:449–456PubMedCrossRefGoogle Scholar
  5. Barisic M, Sohm B, Mikolcevic P, Wandke C, Rauch V, Ringer T, Hess M, Bonn G, Geley S (2010) Spindly/CCDC99 is required for efficient chromosome Congression and mitotic checkpoint regulation. Mol Biol Cell 21:1968–1981PubMedPubMedCentralCrossRefGoogle Scholar
  6. Basto R, Scaerou F, Mische S, Wojcik E, Lefebvre C, Gomes R, Hays T, Karess R (2004) In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Curr Biol 14:56–61PubMedCrossRefGoogle Scholar
  7. Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J (2002) Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108:83–96PubMedCrossRefGoogle Scholar
  8. Belyy V, Schlager MA, Foster H, Reimer AE, Carter AP, Yildiz A (2016) The mammalian dynein–dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nat Cell Biol 18:1018PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bhabha G, Cheng HC, Zhang N, Moeller A, Liao M, Speir JA, Cheng Y, Vale RD (2014) Allosteric communication in the dynein motor domain. Cell 159:857–868PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bi W, Sapir T, Shchelochkov OA, Zhang F, Withers MA, Hunter JV, Levy T, Shinder V, Peiffer DA, Gunderson KL et al (2009) Increased LIS1 expression affects human and mouse brain development. Nat Genet 41:168–177PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bielska E, Schuster M, Roger Y, Berepiki A, Soanes DM, Talbot NJ, Steinberg G (2014) Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. J Cell Biol 204:989PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V (2011) A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Biol 192:855–871PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bosveld F, Ainslie A, Bellaïche Y (2017) Sequential activities of dynein, mud and asp in centrosome–spindle coupling maintain centrosome number upon mitosis. J Cell Sci 130:3557PubMedCrossRefGoogle Scholar
  14. Bradshaw Nicholas J, Hennah W, Soares Dinesh C (2013) NDE1 and NDEL1: twin neurodevelopmental proteins with similar ‘nature’ but different ‘nurture’. In: BioMolecular concepts, p 447Google Scholar
  15. Buffin E, Lefebvre C, Huang J, Gagou ME, Karess RE (2005) Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr Biol 15:856–861PubMedCrossRefGoogle Scholar
  16. Burton P, Adams DR, Abraham A, Allcock RW, Jiang Z, McCahill A, Gilmour J, McAbney J, Kaupisch A, Kane NM et al (2010) Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells. Biochem J 432:575PubMedCrossRefGoogle Scholar
  17. Busson S, Dujardin D, Moreau A, Dompierre J, De Mey JR (1998) Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr Biol 8:541–544PubMedCrossRefGoogle Scholar
  18. Campbell KS, Cooper S, Dessing M, Yates S, Buder A (1998) Interaction of p59fyn kinase with the dynein light chain, Tctex-1, and colocalization during cytokinesis. J Immunol 161:1728–1737PubMedGoogle Scholar
  19. Carter AP, Garbarino JE, Wilson-Kubalek EM, Shipley WE, Cho C, Milligan RA, Vale RD, Gibbons IR (2008) Structure and functional role of Dynein’s microtubule-binding domain. Science 322:1691PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carter AP, Cho C, Jin L, Vale RD (2011) Crystal structure of the dynein motor domain. Science 331:1159PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chan YW, Fava LL, Uldschmid A, Schmitz MHA, Gerlich DW, Nigg EA, Santamaria A (2009) Mitotic control of kinetochore-associated dynein and spindle orientation by human spindly. J Cell Biol 185:859PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cho C, Reck-Peterson SL, Vale RD (2008) Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J Biol Chem 283:25839–25845PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chowdhury S, Ketcham SA, Schroer TA, Lander GC (2015) Structural organization of the dynein–dynactin complex bound to microtubules. Nat Struct Mol Biol 22:345PubMedPubMedCentralCrossRefGoogle Scholar
  24. Clemente GD, Hannaford MR, Januschke J, Griffis ER, Muller H-AJ (2017) Requirement of the dynein-adaptor spindly for mitotic and post-mitotic functions in drosophila. J Dev Biol 2018 Mar 30 6(2): pii: E9.  https://doi.org/10.3390/jdb6020009 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Collins CA, Vallee RB (1989) Preparation of microtubules from rat liver and testis: cytoplasmic dynein is a major microtubule associated protein. Cell Motil Cytoskeleton 14:491–500PubMedCrossRefGoogle Scholar
  26. Compton DA, Szilak I, Cleveland DW (1992) Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J Cell Biol 116:1395–1408PubMedCrossRefGoogle Scholar
  27. Cowles MW, Hubert A, Zayas RM (2012) A Lissencephaly-1 homologue is essential for mitotic progression in the planarian Schmidtea mediterranea. Dev Dyn 241:901–910PubMedCrossRefGoogle Scholar
  28. De Simone A, Gonczy P (2017) Computer simulations reveal mechanisms that organize nuclear dynein forces to separate centrosomes. Mol Biol Cell 28:3165–3170PubMedPubMedCentralCrossRefGoogle Scholar
  29. De Simone A, Nedelec F, Gonczy P (2016) Dynein transmits polarized Actomyosin cortical flows to promote centrosome separation. Cell Rep 14:2250–2262PubMedCrossRefGoogle Scholar
  30. Delcros J-G, Prigent C, Giet R (2006) Dynactin targets Pavarotti-KLP to the central spindle during anaphase and facilitates cytokinesis in Drosophila S2 cells. J Cell Sci 119:4431PubMedCrossRefGoogle Scholar
  31. DeSantis ME, Cianfrocco MA, Htet ZM, Tran PT, Reck-Peterson SL, Leschziner AE (2017) Lis1 has two opposing modes of regulating cytoplasmic dynein. Cell 170:1197–1208. e1112Google Scholar
  32. DeWitt MA, Chang AY, Combs PA, Yildiz A (2012) Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335:221PubMedCrossRefGoogle Scholar
  33. DeWitt MA, Cypranowska CA, Cleary FB, Belyy V, Yildiz A (2014) The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nat Struct Mol Biol 22:73PubMedPubMedCentralCrossRefGoogle Scholar
  34. Egan MJ, Tan K, Reck-Peterson SL (2012) Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 197:971PubMedPubMedCentralCrossRefGoogle Scholar
  35. Farrer MJ, Hulihan MM, Kachergus JM, Dachsel JC, Stoessl AJ, Grantier LL, Calne S, Calne DB, Lechevalier B, Chapon F et al (2009) DCTN1 mutations in Perry syndrome. Nat Genet 41:163–165PubMedPubMedCentralCrossRefGoogle Scholar
  36. Faulkner NE, Dujardin DL, Tai C-Y, Vaughan KT, O’Connell CB, Wang YL, Vallee RB (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2:784PubMedCrossRefGoogle Scholar
  37. Ferenz NP, Paul R, Fagerstrom C, Mogilner A, Wadsworth P (2009) Dynein antagonizes eg5 by crosslinking and sliding antiparallel microtubules. Curr Biol 19:1833–1838PubMedPubMedCentralCrossRefGoogle Scholar
  38. Firestone AJ, Weinger JS, Maldonado M, Barlan K, Langston LD, O’Donnell M, Gelfand VI, Kapoor TM, Chen JK (2012) Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484:125–129PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fu MM, Holzbaur EL (2014) Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol 24:564–574PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gallini S, Carminati M, De Mattia F, Pirovano L, Martini E, Oldani A, Asteriti IA, Guarguaglini G, Mapelli M (2016) NuMA phosphorylation by Aurora-A Orchestrates spindle orientation. Curr Biol 26:458–469PubMedCrossRefGoogle Scholar
  41. Gama JB, Pereira C, Simões PA, Celestino R, Reis RM, Barbosa DJ, Pires HR, Carvalho C, Amorim J, Carvalho AX et al (2017) Molecular mechanism of dynein recruitment to kinetochores by the Rod–Zw10–Zwilch complex and spindly. J Cell Biol 216:943PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gassmann R, Essex A, Hu J-S, Maddox PS, Motegi F, Sugimoto A, O’Rourke SM, Bowerman B, McLeod I, Yates JR et al (2008) A new mechanism controlling kinetochore–microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev 22:2385–2399PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gassmann R, Holland AJ, Varma D, Wan X, Çivril F, Cleveland DW, Oegema K, Salmon ED, Desai A (2010) Removal of spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev 24:957–971PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gee MA, Heuser JE, Vallee RB (1997) An extended microtubule-binding structure within the dynein motor domain. Nature 390:636–639PubMedCrossRefGoogle Scholar
  45. Gibbons IR, Rowe AJ (1965) Dynein: a protein with adenosine Triphosphatase activity from cilia. Science 149:424PubMedCrossRefGoogle Scholar
  46. Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP (2005) The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J Biol Chem 280:23960–23965PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW (1991) Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 115:1639–1650PubMedCrossRefGoogle Scholar
  48. Gonczy P (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9:355–366PubMedCrossRefGoogle Scholar
  49. Gonczy P, Pichler S, Kirkham M, Hyman AA (1999) Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 147:135–150PubMedPubMedCentralCrossRefGoogle Scholar
  50. Goshima G, Nedelec F, Vale RD (2005) Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 171:229–240PubMedPubMedCentralCrossRefGoogle Scholar
  51. Griffis ER, Stuurman N, Vale RD (2007) Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J Cell Biol 177:1005PubMedPubMedCentralCrossRefGoogle Scholar
  52. Grotjahn DA, Chowdhury S, Xu Y, McKenney RJ, Schroer TA, Lander GC (2018) Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility. Nat Struct Mol Biol 25:203–207PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gueth-Hallonet C, Weber K, Osborn M (1996) NuMA: a bipartite nuclear location signal and other functional properties of the tail domain. Exp Cell Res 225:207–218PubMedCrossRefGoogle Scholar
  54. Harborth J, Wang J, Gueth-Hallonet C, Weber K, Osborn M (1999) Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. EMBO J 18:1689–1700PubMedPubMedCentralCrossRefGoogle Scholar
  55. Haren L, Merdes A (2002) Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J Cell Sci 115:1815–1824PubMedGoogle Scholar
  56. Hoing S, Yeh TY, Baumann M, Martinez NE, Habenberger P, Kremer L, Drexler HCA, Kuchler P, Reinhardt P, Choidas A et al (2018) Dynarrestin, a novel inhibitor of cytoplasmic dynein. Cell Chem Biol 25(4):357–369PubMedCrossRefGoogle Scholar
  57. Holland AJ, Reis RM, Niessen S, Pereira C, Andres DA, Spielmann HP, Cleveland DW, Desai A, Gassmann R (2015) Preventing farnesylation of the dynein adaptor spindly contributes to the mitotic defects caused by farnesyltransferase inhibitors. Mol Biol Cell 26:1845–1856PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huang J, Roberts AJ, Leschziner AE, Reck-Peterson SL (2012) Lis1 acts as a “clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell 150:975–986PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hueschen CL, Kenny SJ, Xu K, Dumont S (2017) NuMA recruits dynein activity to microtubule minus-ends at mitosis. elife 2017 Nov 29 6. pii: e29328.  https://doi.org/10.7554/eLife.29328
  60. Imai H, Narita A, Maeda Y, Schroer TA (2014) Dynactin 3D structure: implications for assembly and dynein binding. J Mol Biol 426:3262–3271PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jamison DK, Driver JW, Rogers AR, Constantinou PE, Diehl MR (2010) Two kinesins transport cargo primarily via the action of one motor: implications for intracellular transport. Biophys J 99:2967–2977PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jamison DK, Driver JW, Diehl MR (2012) Cooperative responses of multiple kinesins to variable and constant loads. J Biol Chem 287:3357–3365PubMedCrossRefGoogle Scholar
  63. Jin M, Pomp O, Shinoda T, Toba S, Torisawa T, Furuta Ky, Oiwa K, Yasunaga T, Kitagawa D, Matsumura S et al (2017) Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep 7:39902PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kallajoki M, Harborth J, Weber K, Osborn M (1993) Microinjection of a monoclonal antibody against SPN antigen, now identified by peptide sequences as the NuMA protein, induces micronuclei in PtK2 cells. J Cell Sci 104(Pt 1):139–150PubMedGoogle Scholar
  65. Kaplan A, Reiner O (2011) Linking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein. J Cell Sci 124:3989PubMedCrossRefGoogle Scholar
  66. Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10:854PubMedPubMedCentralCrossRefGoogle Scholar
  67. Karess R (2005) Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 15:386–392PubMedCrossRefGoogle Scholar
  68. Karki S, Holzbaur EL (1995) Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J Biol Chem 270:28806–28811PubMedCrossRefGoogle Scholar
  69. Karki S, LaMonte B, Holzbaur EL (1998) Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells. J Cell Biol 142:1023–1034PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kashina AS, Baskin RJ, Cole DG, Wedaman KP, Saxton WM, Scholey JM (1996) A bipolar kinesin. Nature 379:270–272PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kon T, Nishiura M, Ohkura R, Toyoshima YY, Sutoh K (2004) Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43:11266–11274PubMedCrossRefGoogle Scholar
  72. Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K (2009) Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 16:325PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G (2012) The 2.8 Å crystal structure of the dynein motor domain. Nature 484:345PubMedCrossRefGoogle Scholar
  74. Kops GJ, Kim Y, Weaver BA, Mao Y, McLeod I, Yates JR 3rd, Tagaya M, Cleveland DW (2005) ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol 169:49–60PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kotak S, Gonczy P (2013) Mechanisms of spindle positioning: cortical force generators in the limelight. Curr Opin Cell Biol 25:741–748PubMedCrossRefGoogle Scholar
  76. Kotak S, Busso C, Gönczy P (2012) Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 199:97PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kotak S, Busso C, Gönczy P (2013) NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. EMBO J 32:2517PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kotak S, Busso C, Gönczy P (2014) NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO J 33:1815PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kotak S, Afshar K, Busso C, Gonczy P (2016) Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells. J Cell Sci 129:3015–3025PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lee IG, Olenick MA, Boczkowska M, Franzini-Armstrong C, Holzbaur ELF, Dominguez R (2018) A conserved interaction of the dynein light intermediate chain with dynein-dynactin effectors necessary for processivity. Nat Commun 9:986PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lenz JH, Schuchardt I, Straube A, Steinberg G (2006) A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 25:2275–2286PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lin C-C, Cheng T-S, Hsu C-M, Wu C-H, Chang L-S, Shen Z-S, Yeh H-M, Chang L-K, Howng S-L, Hong Y-R (2006) Characterization and functional aspects of human Ninein isoforms that regulated by Centrosomal targeting signals and evidence for docking sites to direct gamma-tubulin. Cell Cycle 5:2517–2527PubMedCrossRefGoogle Scholar
  83. Lipka J, Kuijpers M, Jaworski J, Hoogenraad CC (2013) Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem Soc Trans 41:1605–1612PubMedCrossRefGoogle Scholar
  84. Lockrow JP, Holden KR, Dwivedi A, Matheus MG, Lyons MJ (2011) LIS1 duplication: expanding the phenotype. J Child Neurol 27:791–795PubMedCrossRefGoogle Scholar
  85. Luderus ME, den Blaauwen JL, de Smit OJ, Compton DA, van Driel R (1994) Binding of matrix attachment regions to Lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol 14:6297–6305PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lydersen BK, Pettijohn DE (1980) Human-specific nuclear protein that associates with the polar region of the mitotic apparatus: distribution in a human/hamster hybrid cell. Cell 22:489–499PubMedCrossRefGoogle Scholar
  87. Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167:831–840PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mallik R, Carter BC, Lex SA, King SJ, Gross SP (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427:649–652PubMedCrossRefGoogle Scholar
  89. McKenney RJ, Vershinin M, Kunwar A, Vallee RB, Gross SP (2010) LIS1 and NudE induce a persistent dynein force-producing state. Cell 141:304–314PubMedPubMedCentralCrossRefGoogle Scholar
  90. McKenney RJ, Weil SJ, Scherer J, Vallee RB (2011) Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J Biol Chem 286:39615–39622PubMedPubMedCentralCrossRefGoogle Scholar
  91. McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD (2014) Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345:337–341PubMedPubMedCentralCrossRefGoogle Scholar
  92. Merdes A, Ramyar K, Vechio JD, Cleveland DW (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–458PubMedCrossRefGoogle Scholar
  93. Moon HM, Youn YH, Pemble H, Yingling J, Wittmann T, Wynshaw-Boris A (2014) LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex. Hum Mol Genet 23:449–466PubMedCrossRefGoogle Scholar
  94. Morales-Mulia S, Scholey JM (2005) Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. Mol Biol Cell 16:3176–3186PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mosalaganti S, Keller J, Altenfeld A, Winzker M, Rombaut P, Saur M, Petrovic A, Wehenkel A, Wohlgemuth S, Müller F et al (2017) Structure of the RZZ complex and molecular basis of its interaction with spindly. J Cell Biol 216:961PubMedPubMedCentralCrossRefGoogle Scholar
  96. Moudgil DK, Chan GKT (2015) Lipids beyond membranes; farnesylation targets spindly to kinetochores. Cell Cycle 14:2185–2186PubMedPubMedCentralCrossRefGoogle Scholar
  97. Moudgil DK, Westcott N, Famulski JK, Patel K, Macdonald D, Hang H, Chan GKT (2015) A novel role of farnesylation in targeting a mitotic checkpoint protein, human spindly, to kinetochores. J Cell Biol 208:881PubMedPubMedCentralCrossRefGoogle Scholar
  98. Murdoch H, Vadrevu S, Prinz A, Dunlop AJ, Klussmann E, Bolger GB, Norman JC, Houslay MD (2011) Interaction between LIS1 and PDE4, and its role in cytoplasmic dynein function. J Cell Sci 124:2253PubMedPubMedCentralCrossRefGoogle Scholar
  99. Nakajima Y, Kanno T, Nagaya T, Kuribayashi K, Nakano T, Gotoh A, Nishizaki T (2015) Adenosine deaminase inhibitor EHNA exhibits a potent anticancer effect against malignant pleural mesothelioma. Cell Physiol Biochem 35:51–60PubMedCrossRefGoogle Scholar
  100. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43PubMedGoogle Scholar
  101. Nguyen-Ngoc T, Afshar K, Gonczy P (2007) Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 9:1294–1302PubMedCrossRefGoogle Scholar
  102. Nicholas MP, Hook P, Brenner S, Wynne CL, Vallee RB, Gennerich A (2015) Control of cytoplasmic dynein force production and processivity by its C-terminal domain. Nat Commun 6:6206PubMedPubMedCentralCrossRefGoogle Scholar
  103. Numata N, Shima T, Ohkura R, Kon T, Sutoh K (2011) C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett 585:1185–1190PubMedCrossRefGoogle Scholar
  104. Nyarko A, Song Y, Barbar E (2012) Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and dynactin. J Biol Chem 287:24884–24893PubMedPubMedCentralCrossRefGoogle Scholar
  105. Olenick MA, Tokito M, Boczkowska M, Dominguez R, Holzbaur ELF (2016) Hook adaptors induce unidirectional processive motility by enhancing the dynein-dynactin interaction. J Biol Chem 2016 Aug 26 291(35): 18239–18251.  https://doi.org/10.1074/jbc.M116.738211. Epub 2016 Jun 30PubMedCrossRefGoogle Scholar
  106. Ou YY, Mack GJ, Zhang M, Rattner JB (2002) CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J Cell Sci 115:1825PubMedGoogle Scholar
  107. Paschal BM, Vallee RB (1987) Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330:181–183PubMedCrossRefGoogle Scholar
  108. Paschal BM, Shpetner HS, Vallee RB (1987) MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol 105:1273PubMedCrossRefGoogle Scholar
  109. Penningroth SM, Cheung A, Bouchard P, Gagnon C, Bardin CW (1982) Dynein ATPase is inhibited selectively in vitro by erythro-9-[3-2-(hydroxynonyl)]adenine. Biochem Biophys Res Commun 104:234–240PubMedCrossRefGoogle Scholar
  110. Petronczki M, Glotzer M, Kraut N, Peters J-M (2007) Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell 12:713–725PubMedCrossRefGoogle Scholar
  111. Potapova T, Gorbsky GJ (2017) The consequences of chromosome segregation errors in mitosis and meiosis. Biology (Basel) 6Google Scholar
  112. Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, Oh SJ et al (2003) Mutant dynactin in motor neuron disease. Nat Genet 33:455–456PubMedCrossRefGoogle Scholar
  113. Raaijmakers JA, van Heesbeen RG, Meaders JL, Geers EF, Fernandez-Garcia B, Medema RH, Tanenbaum ME (2012) Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J 31:4179–4190PubMedPubMedCentralCrossRefGoogle Scholar
  114. Raaijmakers JA, Tanenbaum ME, Medema RH (2013) Systematic dissection of dynein regulators in mitosis. J Cell Biol 201:201–215PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rai AK, Rai A, Ramaiya AJ, Jha R, Mallik R (2013) Molecular adaptations allow dynein to generate large collective forces inside cells. Cell 152:172–182PubMedCrossRefGoogle Scholar
  116. Rank KC, Rayment I (2013) Functional asymmetry in kinesin and dynein dimers. Biol Cell 105:1–13PubMedCrossRefGoogle Scholar
  117. Reboutier D, Troadec MB, Cremet JY, Chauvin L, Guen V, Salaun P, Prigent C (2013) Aurora A is involved in central spindle assembly through phosphorylation of Ser 19 in P150Glued. J Cell Biol 201:65–79PubMedPubMedCentralCrossRefGoogle Scholar
  118. Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348PubMedPubMedCentralCrossRefGoogle Scholar
  119. Redwine WB, Hernandez-Lopez R, Zou S, Huang J, Reck-Peterson SL, Leschziner AE (2012) Structural basis for microtubule binding and release by dynein. Science 337:1532–1536PubMedPubMedCentralCrossRefGoogle Scholar
  120. Redwine WB, DeSantis ME, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL (2017a) The human cytoplasmic dynein interactome reveals novel activators of motility. elife 6Google Scholar
  121. Redwine WB, DeSantis ME, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL (2017b) The human cytoplasmic dynein interactome reveals novel activators of motility. elife 6:e28257PubMedPubMedCentralCrossRefGoogle Scholar
  122. Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dicker lissencephaly gene containing G protein [beta]-subunit-like repeats. Nature 364:717–721PubMedCrossRefGoogle Scholar
  123. Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B, Kon T, Ohkura R, Arisaka F, Knight PJ, Sutoh K et al (2009) AAA+ Ring and linker swing mechanism in the dynein motor. Cell 136:485–495PubMedPubMedCentralCrossRefGoogle Scholar
  124. Roberts AJ, Malkova B, Walker ML, Sakakibara H, Numata N, Kon T, Ohkura R, Edwards TA, Knight PJ, Sutoh K et al (2012) ATP-driven remodeling of the linker domain in the dynein motor. Structure 20:1670–1680PubMedPubMedCentralCrossRefGoogle Scholar
  125. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14:713PubMedPubMedCentralCrossRefGoogle Scholar
  126. Robinson JT, Wojcik EJ, Sanders MA, McGrail M, Hays TS (1999) Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J Cell Biol 146:597–608PubMedPubMedCentralCrossRefGoogle Scholar
  127. Roossien D, Miller K, Gallo G (2015) Ciliobrevins as tools for studying dynein motor function. Front Cell Neurosci 9:252PubMedPubMedCentralCrossRefGoogle Scholar
  128. Salina D, Bodoor K, Eckley DM, Schroer TA, Rattner JB, Burke B (2002) Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108:97–107PubMedCrossRefGoogle Scholar
  129. Saredi A, Howard L, Compton DA (1997) Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract. J Cell Sci 110(Pt 11):1287–1297PubMedGoogle Scholar
  130. Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A, Hirotsune S (2000) A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28:681–696PubMedCrossRefGoogle Scholar
  131. Schlager MA, Serra-Marques A, Grigoriev I, Gumy LF, Esteves da Silva M, Wulf PS, Akhmanova A, Hoogenraad CC (2014) Bicaudal d family adaptor proteins control the velocity of dynein-based movements. Cell Rep 8:1248–1256PubMedCrossRefGoogle Scholar
  132. Schliwa M, Woehlke G (2003) Molecular motors. Nature 422:759–765PubMedCrossRefGoogle Scholar
  133. Schliwa M, Ezzell RM, Euteneuer U (1984) erythro-9-[3-(2-Hydroxynonyl)]adenine is an effective inhibitor of cell motility and actin assembly. Proc Natl Acad Sci USA 81:6044–6048PubMedCrossRefGoogle Scholar
  134. Schmidt DJ, Rose DJ, Saxton WM, Strome S (2005) Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol Biol Cell 16:1200–1212PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schmidt H, Gleave ES, Carter AP (2012) Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 19:492PubMedPubMedCentralCrossRefGoogle Scholar
  136. Schmidt H, Zalyte R, Urnavicius L, Carter AP (2015) Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518:435–438PubMedCrossRefGoogle Scholar
  137. Schmidt R, Fielmich L-E, Grigoriev I, Katrukha EA, Akhmanova A, van den Heuvel S (2017) Two populations of cytoplasmic dynein contribute to spindle positioning in C. elegans embryos. J Cell Biol 216:2777PubMedPubMedCentralGoogle Scholar
  138. Schroeder CM, Vale RD (2016) Assembly and activation of dynein-dynactin by the cargo adaptor protein Hook3. J Cell Biol 214:309–318PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779PubMedCrossRefGoogle Scholar
  140. Seldin L, Muroyama A, Lechler T (2016) NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. elife 5:e12504PubMedPubMedCentralCrossRefGoogle Scholar
  141. Shao C-Y, Zhu J, Xie Y-J, Wang Z, Wang Y-N, Wang Y, Su L-D, Zhou L, Zhou T-H, Shen Y (2013) Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport. Traffic 14:785–797PubMedCrossRefGoogle Scholar
  142. Sharp DJ, Rogers GC, Scholey JM (2000a) Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol 2:922–930PubMedCrossRefGoogle Scholar
  143. Sharp DJ, Rogers GC, Scholey JM (2000b) Microtubule motors in mitosis. Nature 407:41–47PubMedCrossRefGoogle Scholar
  144. Siaw MF, Mitchell BS, Koller CA, Coleman MS, Hutton JJ (1980) ATP depletion as a consequence of adenosine deaminase inhibition in man. Proc Natl Acad Sci USA 77:6157–6161PubMedCrossRefGoogle Scholar
  145. Silva PMA, Tavares ÁA, Bousbaa H (2015) Co-silencing of human Bub3 and dynein highlights an antagonistic relationship in regulating kinetochore–microtubule attachments. FEBS Lett 589:3588–3594PubMedCrossRefGoogle Scholar
  146. Silva PMA, Ribeiro N, Lima RT, Andrade C, Diogo V, Teixeira J, Florindo C, Tavares Á, Vasconcelos MH, Bousbaa H (2017) Suppression of spindly delays mitotic exit and exacerbates cell death response of cancer cells treated with low doses of paclitaxel. Cancer Lett 394:33–42PubMedCrossRefGoogle Scholar
  147. Smith DS, Niethammer M, Ayala R, Zhou Y, Gambello MJ, Wynshaw-Boris A, Tsai L-H (2000) Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat Cell Biol 2:767PubMedCrossRefGoogle Scholar
  148. Sparks CA, Fey EG, Vidair CA, Doxsey SJ (1995) Phosphorylation of NUMA occurs during nuclear breakdown and not mitotic spindle assembly. J Cell Sci 108(Pt 11):3389–3396PubMedGoogle Scholar
  149. Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N et al (2010) Bicaudal D2, dynein, and Kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8:e1000350PubMedPubMedCentralCrossRefGoogle Scholar
  150. Starr DA, Williams BC, Hays TS, Goldberg ML (1998) ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 142:763–774PubMedPubMedCentralCrossRefGoogle Scholar
  151. Stehman SA, Chen Y, McKenney RJ, Vallee RB (2007) NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J Cell Biol 178:583–594PubMedPubMedCentralCrossRefGoogle Scholar
  152. Steinman JB, Santarossa CC, Miller RM, Yu LS, Serpinskaya AS, Furukawa H, Morimoto S, Tanaka Y, Nishitani M, Asano M et al (2017) Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. elife 6:e25174PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tai C-Y, Dujardin DL, Faulkner NE, Vallee RB (2002) Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol 156:959–968PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tanenbaum ME, Medema RH (2010) Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 19:797–806PubMedCrossRefGoogle Scholar
  155. Tanenbaum ME, Akhmanova A, Medema RH (2010) Dynein at the nuclear envelope. EMBO Rep 11:649PubMedPubMedCentralCrossRefGoogle Scholar
  156. Thankachan JM, Nuthalapati SS, Addanki Tirumala N, Ananthanarayanan V (2017) Fission yeast myosin I facilitates PI(4,5)P2-mediated anchoring of cytoplasmic dynein to the cortex. Proc Natl Acad Sci USA 114:E2672–E2681PubMedCrossRefGoogle Scholar
  157. Toba S, Watanabe TM, Yamaguchi-Okimoto L, Toyoshima YY, Higuchi H (2006) Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci USA 103:5741–5745PubMedCrossRefGoogle Scholar
  158. Torisawa T, Ichikawa M, Furuta A, Saito K, Oiwa K, Kojima H, Toyoshima YY, Furuta Ky (2014) Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat Cell Biol 16:1118–1124PubMedCrossRefGoogle Scholar
  159. Toropova K, Zou S, Roberts AJ, Redwine WB, Goodman BS, Reck-Peterson SL, Leschziner AE (2014) Lis1 regulates dynein by sterically blocking its mechanochemical cycle. elife 3:e03372PubMedCentralCrossRefPubMedGoogle Scholar
  160. Tousson A, Zeng C, Brinkley BR, Valdivia MM (1991) Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation. J Cell Biol 112:427–440PubMedCrossRefGoogle Scholar
  161. Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA, Yu M, Patel NA, Robinson CV, Carter AP (2015) The structure of the dynactin complex and its interaction with dynein. Science 347:1441–1446PubMedPubMedCentralCrossRefGoogle Scholar
  162. Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, Yildiz A, Carter AP (2018) Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554:202–206PubMedPubMedCentralCrossRefGoogle Scholar
  163. Uteng M, Hentrich C, Miura K, Bieling P, Surrey T (2008) Poleward transport of Eg5 by dynein–dynactin in Xenopus laevis egg extract spindles. J Cell Biol 182:715–726PubMedPubMedCentralCrossRefGoogle Scholar
  164. Vale RD, Milligan RA (2000) The way things move: looking under the Hood of molecular motor proteins. Science 288:88PubMedCrossRefGoogle Scholar
  165. Vallee RB, Varma D, Dujardin DL (2006) ZW10 function in mitotic checkpoint control, dynein targeting, and membrane trafficking: is dynein the unifying theme? Cell Cycle 5:2447–2451PubMedPubMedCentralCrossRefGoogle Scholar
  166. Vallee RB, McKenney RJ, Ori-McKenney KM (2012) Multiple modes of cytoplasmic dynein regulation. Nat Cell Biol 14:224PubMedCrossRefGoogle Scholar
  167. van Heesbeen RGHP, Raaijmakers JA, Tanenbaum ME, Medema RH (2013) Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation. Commun Integr Biol 6:e23841PubMedPubMedCentralCrossRefGoogle Scholar
  168. Verde F, Berrez JM, Antony C, Karsenti E (1991) Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J Cell Biol 112:1177–1187PubMedCrossRefGoogle Scholar
  169. Vergnolle MA, Taylor SS (2007) Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol 17:1173–1179PubMedCrossRefGoogle Scholar
  170. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189PubMedCrossRefGoogle Scholar
  171. Walenta JH, Didier AJ, Liu X, Krämer H (2001) The Golgi-associated Hook3 protein is a member of a novel family of microtubule-binding proteins. J Cell Biol 152:923PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wang Y, Zhan Q (2007) Cell cycle-dependent expression of Centrosomal Ninein-like protein in human cells is regulated by the anaphase-promoting complex. J Biol Chem 282:17712–17719PubMedCrossRefGoogle Scholar
  173. Wang S, Zheng Y (2011) Identification of a novel dynein binding domain in Nudel essential for spindle pole Organization in Xenopus egg Extract. J Biol Chem 286:587–593PubMedCrossRefGoogle Scholar
  174. Wang S, Ketcham SA, Schön A, Goodman B, Wang Y, Yates J, Freire E, Schroer TA, Zheng Y (2013) Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis. Mol Biol Cell 24:3522–3533PubMedPubMedCentralCrossRefGoogle Scholar
  175. Willins DA, Liu B, Xiang X, Morris NR (1997) Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of aspergillus nidulans. Mol Gen Genet 255:194–200PubMedCrossRefGoogle Scholar
  176. Wynshaw-Boris A (2007) Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin Genet 72:296–304PubMedCrossRefGoogle Scholar
  177. Xiang X, Osmani AH, Osmani SA, Xin M, Morris NR (1995) NudF, a nuclear migration gene in aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell 6:297–310PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yagi T (2009) Chapter 1 – Bioinformatic approaches to dynein heavy chain classification. In: King SM, Pazour GJ (eds) Methods in cell biology. Academic Press, New York, pp 1–9Google Scholar
  179. Yang CH, Lambie EJ, Snyder M (1992) NuMA: an unusually long coiled-coil related protein in the mammalian nucleus. J Cell Biol 116:1303–1317PubMedCrossRefGoogle Scholar
  180. Yang Z, Tulu US, Wadsworth P, Rieder CL (2007) Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol 17:973–980PubMedPubMedCentralCrossRefGoogle Scholar
  181. Ye S, Fowler TW, Pavlos NJ, Ng PY, Liang K, Feng Y, Zheng M, Kurten R, Manolagas SC, Zhao H (2011) LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS One 6:e27285PubMedPubMedCentralCrossRefGoogle Scholar
  182. Yeh TY, Quintyne NJ, Scipioni BR, Eckley DM, Schroer TA (2012) Dynactin’s pointed-end complex is a cargo-targeting module. Mol Biol Cell 23:3827–3837PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yeh TY, Kowalska AK, Scipioni BR, Cheong FKY, Zheng M, Derewenda U, Derewenda ZS, Schroer TA (2013) Dynactin helps target polo-like kinase 1 to kinetochores via its left-handed beta-helical p27 subunit. EMBO J 32:1023PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhang J, Yao X, Fischer L, Abenza JF, Penalva MA, Xiang X (2011) The p25 subunit of the dynactin complex is required for dynein-early endosome interaction. J Cell Biol 193:1245–1255PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zhang J, Qiu R, Arst HN Jr, Penalva MA, Xiang X (2014) HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. J Cell Biol 204:1009–1026PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP (2017) Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169:1303–1314. e1318PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zimdahl B, Ito T, Blevins A, Bajaj J, Konuma T, Weeks J, Koechlein CS, Kwon HY, Arami O, Rizzieri D et al (2014) Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nat Genet 46:245–252PubMedPubMedCentralCrossRefGoogle Scholar
  188. Żyłkiewicz E, Kijańska M, Choi W-C, Derewenda U, Derewenda ZS, Stukenberg PT (2011) The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. J Cell Biol 192:433–445PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia

Personalised recommendations