Advertisement

Soluble Amyloid Precursor Protein α: Friend or Foe?

  • Nicola J. Corbett
  • Nigel M. HooperEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1112)

Abstract

The “amyloidogenic” proteolytic processing of the cell surface amyloid precursor protein (APP) produces amyloid-β, which causes a range of detrimental effects in the neuron, such as synaptic loss, and plays a key role in Alzheimer’s disease. In contrast, “non-amyloidogenic” proteolytic processing, which involves the cleavage of APP by α-secretase, produces soluble amyloid precursor protein α (sAPPα) and is the most predominant proteolytic processing of APP in the healthy brain. Current research suggests that sAPPα plays a role in synaptic growth and plasticity, but whether this role is protective or detrimental is age-dependent. This review looks at the effects of increasing sAPPα during three time-points in life (in development, young adult, ageing/neurodegeneration) when synaptic plasticity plays an important role.

Keywords

Soluble amyloid precursor protein α (sAPPα) Amyloid precursor protein (APP) A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) Synaptic plasticity Development Ageing Neurodegeneration Neuroprotection Dendritic spines 

Referencess

  1. Almkvist O, Basun H, Wagner SL, Rowe BA, Wahlund LO, Lannfelt L (1997) Cerebrospinal fluid levels of alpha-secretase-cleaved soluble amyloid precursor protein mirror cognition in a Swedish family with Alzheimer disease and a gene mutation. Arch Neurol 54(5):641–644CrossRefGoogle Scholar
  2. Anderson JJ, Holtz G, Baskin PP, Wang R, Mazzarelli L, Wagner SL, Menzaghi F (1999) Reduced cerebrospinal fluid levels of alpha-secretase-cleaved amyloid precursor protein in aged rats: correlation with spatial memory deficits. Neuroscience 93(4):1409–1420CrossRefGoogle Scholar
  3. Andrew RJ, Kellett KA, Thinakaran G, Hooper NM (2016) A Greek tragedy: the growing complexity of Alzheimer amyloid precursor protein proteolysis. J Biol Chem 291(37):19235–19244.  https://doi.org/10.1074/jbc.R116.746032 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailey AR, Hou H, Obregon DF, Tian J, Zhu Y, Zou Q, Nikolic WV, Bengtson M, Mori T, Murphy T, Tan J (2012) Aberrant T-lymphocyte development and function in mice overexpressing human soluble amyloid precursor protein-alpha: implications for autism. FASEB J 26(3):1040–1051.  https://doi.org/10.1096/fj.11-195438 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bailey AR, Hou H, Song M, Obregon DF, Portis S, Barger S, Shytle D, Stock S, Mori T, Sanberg PG, Murphy T, Tan J (2013) GFAP expression and social deficits in transgenic mice overexpressing human sAPPalpha. Glia 61(9):1556–1569.  https://doi.org/10.1002/glia.22544 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barger SW, Mattson MP (1995) The secreted form of the Alzheimer’s beta-amyloid precursor protein stimulates a membrane-associated guanylate cyclase. Biochem J 311(Pt 1):45–47CrossRefGoogle Scholar
  7. Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, Prochiantz A (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131(9):2173–2181.  https://doi.org/10.1242/dev.01103 CrossRefPubMedGoogle Scholar
  8. Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein beta and secreted amyloid precursor protein alpha induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 6(1):e16301.  https://doi.org/10.1371/journal.pone.0016301 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Claasen AM, Guevremont D, Mason-Parker SE, Bourne K, Tate WP, Abraham WC, Williams JM (2009) Secreted amyloid precursor protein-alpha upregulates synaptic protein synthesis by a protein kinase G-dependent mechanism. Neurosci Lett 460(1):92–96.  https://doi.org/10.1016/j.neulet.2009.05.040 CrossRefPubMedGoogle Scholar
  10. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245–254CrossRefGoogle Scholar
  11. Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290(3):337–344.  https://doi.org/10.1001/jama.290.3.337 CrossRefPubMedGoogle Scholar
  12. Demars MP, Bartholomew A, Strakova Z, Lazarov O (2011) Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Res Ther 2(4):36.  https://doi.org/10.1186/scrt77 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deng J, Habib A, Obregon DF, Barger SW, Giunta B, Wang YJ, Hou H, Sawmiller D, Tan J (2015) Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3beta signaling pathway. J Neurochem 135(3):630–637.  https://doi.org/10.1111/jnc.13351 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dobrowolska JA, Kasten T, Huang Y, Benzinger TL, Sigurdson W, Ovod V, Morris JC, Bateman RJ (2014) Diurnal patterns of soluble amyloid precursor protein metabolites in the human central nervous system. PLoS One 9(3):e89998.  https://doi.org/10.1371/journal.pone.0089998 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fol R, Braudeau J, Ludewig S, Abel T, Weyer SW, Roederer JP, Brod F, Audrain M, Bemelmans AP, Buchholz CJ, Korte M, Cartier N, Muller UC (2016) Viral gene transfer of APPsalpha rescues synaptic failure in an Alzheimer’s disease mouse model. Acta Neuropathol 131(2):247–266.  https://doi.org/10.1007/s00401-015-1498-9 CrossRefPubMedGoogle Scholar
  16. Furukawa K, Mattson MP (1998) The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 70(5):1876–1886CrossRefGoogle Scholar
  17. Furukawa N, Hatano M, Fukuda H, Koga T (1998) Non-N-methyl-D-aspartate receptors may mediate the transmission of emetic signals between visceral vagal afferents and the solitary nucleus in dogs. Neurosci Lett 258(1):53–56CrossRefGoogle Scholar
  18. Gakhar-Koppole N, Hundeshagen P, Mandl C, Weyer SW, Allinquant B, Muller U, Ciccolini F (2008) Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci 28(5):871–882.  https://doi.org/10.1111/j.1460-9568.2008.06398.x CrossRefPubMedGoogle Scholar
  19. Goodman Y, Mattson MP (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 128(1):1–12.  https://doi.org/10.1006/exnr.1994.1107 CrossRefPubMedGoogle Scholar
  20. Gustafsen C, Glerup S, Pallesen LT, Olsen D, Andersen OM, Nykjaer A, Madsen P, Petersen CM (2013) Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein. J Neurosci 33(1):64–71.  https://doi.org/10.1523/JNEUROSCI.2371-12.2013 CrossRefPubMedGoogle Scholar
  21. Habib A, Sawmiller D, Tan J (2017) Restoring soluble amyloid precursor protein alpha functions as a potential treatment for Alzheimer’s disease. J Neurosci Res 95(4):973–991.  https://doi.org/10.1002/jnr.23823 CrossRefPubMedGoogle Scholar
  22. Hartl D, Klatt S, Roch M, Konthur Z, Klose J, Willnow TE, Rohe M (2013) Soluble alpha-APP (sAPPalpha) regulates CDK5 expression and activity in neurons. PLoS One 8(6):e65920.  https://doi.org/10.1371/journal.pone.0065920 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hasebe N, Fujita Y, Ueno M, Yoshimura K, Fujino Y, Yamashita T (2013) Soluble beta-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS One 8(12):e82321.  https://doi.org/10.1371/journal.pone.0082321 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Klatt S, Rohe M, Alagesan K, Kolarich D, Konthur Z, Hartl D (2013) Production of glycosylated soluble amyloid precursor protein alpha (sAPPalpha) in Leishmania tarentolae. J Proteome Res 12(1):396–403.  https://doi.org/10.1021/pr300693f CrossRefPubMedGoogle Scholar
  25. Lahiri DK, Nall C, Chen D, Zaphiriou M, Morgan C, Nurnberger JI Sr (2002) Developmental expression of the beta-amyloid precursor protein and heat-shock protein 70 in the cerebral hemisphere region of the rat brain. Ann N Y Acad Sci 965:324–333CrossRefGoogle Scholar
  26. Lannfelt L, Basun H, Wahlund LO, Rowe BA, Wagner SL (1995) Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer’s disease. Nat Med 1(8):829–832CrossRefGoogle Scholar
  27. Obregon D, Hou H, Deng J, Giunta B, Tian J, Darlington D, Shahaduzzaman M, Zhu Y, Mori T, Mattson MP, Tan J (2012) Soluble amyloid precursor protein-alpha modulates beta-secretase activity and amyloid-beta generation. Nat Commun 3:777.  https://doi.org/10.1038/ncomms1781 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pasciuto E, Ahmed T, Wahle T, Gardoni F, D’Andrea L, Pacini L, Jacquemont S, Tassone F, Balschun D, Dotti CG, Callaerts-Vegh Z, D’Hooge R, Muller UC, Di Luca M, De Strooper B, Bagni C (2015) Dysregulated ADAM10-mediated processing of APP during a critical time window leads to synaptic deficits in fragile X syndrome. Neuron 87(2):382–398.  https://doi.org/10.1016/j.neuron.2015.06.032 CrossRefPubMedGoogle Scholar
  29. Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27):7212–7221.  https://doi.org/10.1523/JNEUROSCI.1450-06.2006 CrossRefPubMedGoogle Scholar
  30. Ray B, Long JM, Sokol DK, Lahiri DK (2011) Increased secreted amyloid precursor protein-alpha (sAPPalpha) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 6(6):e20405.  https://doi.org/10.1371/journal.pone.0020405 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA, Herms J, Buchholz C, Eckman CB, Korte M, Wolfer DP, Muller UC (2007) The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27(29):7817–7826.  https://doi.org/10.1523/JNEUROSCI.1026-07.2007 CrossRefPubMedGoogle Scholar
  32. Roch JM, Masliah E, Roch-Levecq AC, Sundsmo MP, Otero DA, Veinbergs I, Saitoh T (1994) Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid beta/A4 protein precursor. Proc Natl Acad Sci U S A 91(16):7450–7454CrossRefGoogle Scholar
  33. Rohe M, Carlo AS, Breyhan H, Sporbert A, Militz D, Schmidt V, Wozny C, Harmeier A, Erdmann B, Bales KR, Wolf S, Kempermann G, Paul SM, Schmitz D, Bayer TA, Willnow TE, Andersen OM (2008) Sortilin-related receptor with A-type repeats (SORLA) affects the amyloid precursor protein-dependent stimulation of ERK signaling and adult neurogenesis. J Biol Chem 283(21):14826–14834.  https://doi.org/10.1074/jbc.M710574200 CrossRefPubMedGoogle Scholar
  34. Sokol DK, Chen D, Farlow MR, Dunn DW, Maloney B, Zimmer JA, Lahiri DK (2006) High levels of Alzheimer beta-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. J Child Neurol 21(6):444–449CrossRefGoogle Scholar
  35. Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59(2):184–192CrossRefGoogle Scholar
  36. Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24(35):7707–7717.  https://doi.org/10.1523/JNEUROSCI.2211-04.2004 CrossRefPubMedGoogle Scholar
  37. Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP, Abraham WC (2008) Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 31(2):250–260.  https://doi.org/10.1016/j.nbd.2008.04.011 CrossRefPubMedGoogle Scholar
  38. Westmark CJ, Malter JS (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 5(3):e52.  https://doi.org/10.1371/journal.pbio.0050052 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK

Personalised recommendations