Advertisement

Preliminaries on Cellular Automata

  • Debajyoti Mukhopadhyay
  • Anirban Kundu
Chapter
Part of the Cognitive Intelligence and Robotics book series (CIR)

Abstract

A Cellular Automata (CA) is an autonomous machine which evolves in discrete space and time. Study of the homogeneous structure of CA was initiated by Neumann (The theory of self-reproducing automata. University of Illinois Press, Urbana and London, 1966, [1]) to simulate physical systems. In last few decades, a large number of authors from diverse disciplines have investigated wide varieties of CA applications.

References

  1. 1.
    J.V. Neumann, in The Theory of Self-Reproducing Automata, ed. by A.W. Burks (University of Illinois Press, Urbana and London, 1966)Google Scholar
  2. 2.
    S. Wolfram, Theory and Application of Cellular Automata (World Scientific, 1986)Google Scholar
  3. 3.
    M. Sipper, Co-evolving non-uniform cellular automata to perform computations. Physica D 92, 193–208 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Ganguly, Cellular automata evolution: theory and applications in pattern recognition and classification, Ph.D Thesis, CST Department, BECDU, India, 2003Google Scholar
  5. 5.
    B. Choprad, M. Droz, Cellular Automata Modelling of Physical Systems (Cambridge University Press, 1998)Google Scholar
  6. 6.
    K. Culik, L.P. Hard, S. Yu, Computation theoritic aspects of cellular automata. Physica D 45(1–3), 357–378 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Sutner, Additive automata on graphs. Complex Syst. 2, 649–661 (1988)Google Scholar
  8. 8.
    T. Toffoli, CAM: a high Performance cellular automata machine. Physica D 10, 195 (1984)MathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Tsalides, T.A. York, A. Thanailakis, Pseudo-random number generators for VLSI systems based on linear cellular automata. IEE Proc. E. Comput. Digit. Tech. 138(4), 241–249 (1991)CrossRefGoogle Scholar
  10. 10.
    C. Bastein et al., Cellular automata approach to reaction–diffusion system: theory and application. Cell. Automata Prospect Astrophys. Appl. 157–186 (1995)Google Scholar
  11. 11.
    Marco Tomassini, Moshe Sipper, Mathiu Perrenoud, On the generation of high quality random numbers by two dimensional cellular automata. IEEE Trans. Comput. 49(10), 1146–1151 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Sipper, A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans. Evol. Comput. 83–97 (1997)CrossRefGoogle Scholar
  13. 13.
    C.C. Walker, Attractor dominance patterns in sparsely connected boolean nets. Physica D 45, 441–451 (1990)CrossRefGoogle Scholar
  14. 14.
    P. Tzionas, P. Tsalides, A. Thanailakis, Design and VLSI implementation of a pattern classifier using pseudo 2D cellular automata. IEE Proc. G 139(6), 661–668 (1992)Google Scholar
  15. 15.
    C.G. Langton, Computation at the edge of chaos. Physica D 42, 12–37 (1990)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Mitchell, P.T. Hraber, J.P. Crutchfield, Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst. 7, 89–130 (1993)zbMATHGoogle Scholar
  17. 17.
    B.B. Cambazoglu, I.S. Altingovde, R. Ozcan, O. Ulusoy, Cache-based query processing for search engines. ACM Trans. Web 6(4), 24 p, (2012) (Article 14) https://doi.org/10.1145/2382616.2382617CrossRefGoogle Scholar
  18. 18.
    P.P. Chaudhuri, D.R. Chowdhury, S. Nandi, S. Chatterjee, Additive cellular automata, theory and applications, vol. 1. (IEEE Computer Society Press, Los Alamitos, California, 1997). ISBN: 0-8186-7717-1Google Scholar
  19. 19.
    S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, IL, 2002)zbMATHGoogle Scholar
  20. 20.
    E.W. Weisstein, Cellular automaton, mathworld—a wolfram web resource, http://mathworld.wolfram.com/ CellularAutomaton.html
  21. 21.
    J. Cho, H. Garcia-Molina, Parallel crawlers, in 11th International World Wide Web Conference (WWW’02) (ACM Digital Library, Honolulu, Hawaii, USA, 2002), DOI:1-58113-449-5/02/0005Google Scholar
  22. 22.
    Y. Takai, N.K. Takai, K.J. Nakamori, Exploration of the reaction-diffusion textures, in Proceedings of International Conference on Modelling and Simulation, 1998Google Scholar
  23. 23.
    D. Yadav, A.K. Sharma, J.P. Gupta, Parallel crawler architecture and web page change detection. W. Trans. Comp. 7, 929–940 (2008)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Web Intelligence and Distributed Computing Research Lab, Computer Engineering DepartmentNHITM of Mumbai UniversityKavesar, Thane (W)India
  2. 2.Department of Information TechnologyNetaji Subhash Engineering CollegeGaria, KolkataIndia

Personalised recommendations