Advertisement

Domain-Specific Lucky Searching

  • Debajyoti Mukhopadhyay
  • Sukanta Sinha
Chapter
Part of the Cognitive Intelligence and Robotics book series (CIR)

Abstract

In Chapter “ Domain-Specific Web-Page Prediction”, we have given a detailed design of Web-page prediction using Boolean bit mask. In this chapter we are going to present a mechanism of lucky searching, which saves Web searcher search time.

References

  1. 1.
    T. Berners-Lee, M. Fischetti, Weaving the Web: the Original Design and Ultimate Destiny of the World Wide Web by its Inventor (HarperBusiness, New York, 1999)Google Scholar
  2. 2.
    B.M. Leiner, V.G. Cerf, D.D. Clark, R.E. Kahn, L. Kleinrock, D.C. Lynch, J. Postel, L.G. Roberts, S. Wolff, A brief history of internet. ACM Comput. Commun. 35(1), 22–31 (2009).  https://doi.org/10.1145/1629607.1629613CrossRefGoogle Scholar
  3. 3.
    W. Willinger, R. Govindan, S. Jamin, V. Paxson, S. Shenker, Scaling Phenomena in the Internet (Proc. Natl. Acad. Sci., New York, 2002), pp. 2573–2580Google Scholar
  4. 4.
    J.J. Rehmeyer, Mapping a medusa: the internet spreads its tentacles. Science News 171(25), 387–388 (2007).  https://doi.org/10.1002/scin.2007.5591712503CrossRefGoogle Scholar
  5. 5.
    M. E. Bates, D. Anderson, in Free, fee-based and value-added information services Factiva, The Factiva 2002 White Paper Series, Dow-Jones Reuters Business Interactive, LLC, 2002Google Scholar
  6. 6.
    D. Hawking, N. Craswell, P. Bailey, K. Griffihs, in Measuring search engine quality. Inf. Retrieval, Elsevier 4(1), 33–59 (2001)Google Scholar
  7. 7.
    T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘02, Edmonton, Alberta, Canada, 2002, pp. 133–142Google Scholar
  8. 8.
    D. Mukhopadhyay, S. R. Singh, Two Novel Methodologies for Searching the Web: Confidence Based and Hyperlink-Content Based. Haldia Institute of Technology, Department of Computer Science & Engineering Research Report (2003)Google Scholar
  9. 9.
    R. Baeza-Yates, C. Hurtado, M. Mendoza, G. Dupret, Modeling user search behavior, in Proceedings of the Third Latin American Web Congress, LA-WEB’2005, Buenos Aires, Argentina, 2005, pp. 242–251Google Scholar
  10. 10.
    O. Hoeber, Web information retrieval support systems: The future of Web search, in IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology, WI-IAT’08, IEEE Computer Society, 2008, pp. 29–32Google Scholar
  11. 11.
    T.P.C. Silva, E.S. de Moura, J.M.B. Cavalcanti, A.S. da Silva, M.G. de Carvalho, M.A. Gonc-alves, An evolutionary approach for combining different sources of evidence in search engines. Inf. Syst., Elsevier 34, 276–289 (2009)CrossRefGoogle Scholar
  12. 12.
    J.L. Hong, E.G. Siew, S. Egerton, Information extraction for search engines using fast heuristic techniques. Data Knowl. Eng. Elsevier 69, 169–196 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Web Intelligence and Distributed Computing Research Lab, Computer Engineering DepartmentNHITM of Mumbai UniversityKavesar, Thane (W)India
  2. 2.Wipro LimitedBrisbaneAustralia

Personalised recommendations