Advertisement

Clinical Management of Hereditary Colorectal Cancer

  • Kensuke Kumamoto
  • Hideyuki Ishida
Chapter

Abstract

Lynch syndrome (LS) is an autosomal dominant inherited syndrome characterized by the development of early-onset colorectal cancer (CRC), endometrial cancer, and other cancers. Universal tumor screening for detection of LS in all CRC and endometrial cancer patients tends to be popular instead of use of conventional clinical guidelines. Immunohistochemistry of mismatch repair proteins appears to be favorable compared to microsatellite instability (MSI) testing in terms of identification of the causative gene. The surveillance for individuals with LS is established in CRC and gynecological cancer depending on the causative genes, while there are still no evidences in other LS-associated cancers. Among adenomatous polyposis syndrome, more than 100 polyps clinically come up with the diagnosis of familial adenomatous polyposis (FAP). If the number of polyps is less than 100, germline genetic testing of the APC, MUTYH, POLE, and POLD1 genes should be needed to make an accurate diagnosis. Early diagnosis and management is required due to complete penetrance and an almost 100% lifetime risk of CRC without intervention in FAP patients. In addition to CRC, the screening of duodenal cancer and desmoid tumors should be routinely performed to prevent the mortality.

Keywords

Hereditary colorectal cancer Lynch syndrome Lynch-like syndrome Familial adenomatous polyposis (FAP) Microsatellite instability (MSI) 

References

  1. 1.
    Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.CrossRefGoogle Scholar
  2. 2.
    Grover S, Kastrinos F, Steyerberg EW, et al. Prevalence and phenotypes of APC and MUTYH mutations in patients with multiple colorectal adenomas. JAMA. 2012;308:485–92.CrossRefGoogle Scholar
  3. 3.
    Vasen HF. Clinical diagnosis and management of hereditary colorectal cancer syndromes. J Clin Oncol. 2000;18:81S–92S.PubMedGoogle Scholar
  4. 4.
    Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96:261–8.CrossRefGoogle Scholar
  5. 5.
    Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ. Hereditary factors in cancer. Study of two large midwestern kindreds. Arch Intern Med. 1966;117:206–12.CrossRefGoogle Scholar
  6. 6.
    Moreira L, Balaguer F, Lindor N, et al. Identification of Lynch syndrome among patients with colorectal cancer. JAMA. 2012;308:1555–65.CrossRefGoogle Scholar
  7. 7.
    Pérez-Carbonell L, Ruiz-Ponte C, Guarinos C, et al. Comparison between universal molecular screening for Lynch syndrome and revised Bethesda guidelines in a large population-based cohort of patients with colorectal cancer. Gut. 2012;61:865–72.CrossRefGoogle Scholar
  8. 8.
    Katz LH, Burton-Chase AM, Advani S, et al. Screening adherence and cancer risk perceptions in colorectal cancer survivors with Lynch-like syndrome. Clin Genet. 2016;89:392–8.CrossRefGoogle Scholar
  9. 9.
    Carethers JM, Stoffel EM. Lynch syndrome and Lynch syndrome mimics: the growing complex landscape of hereditary colon cancer. World J Gastroenterol. 2015;21:9253–61.CrossRefGoogle Scholar
  10. 10.
    Geurts-Giele WR, Leenen CH, Dubbink HJ, et al. Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers. J Pathol. 2014;234:548–59.CrossRefGoogle Scholar
  11. 11.
    Haraldsdottir S, Hampel H, Tomsic J, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147:1308–16.CrossRefGoogle Scholar
  12. 12.
    Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology. 2014;146:643–6.CrossRefGoogle Scholar
  13. 13.
    Rodríguez-Soler M, Pérez-Carbonell L, Guarinos C, et al. Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology. 2013;144:926–32.CrossRefGoogle Scholar
  14. 14.
    Lindor NM, Rabe K, Petersen GM, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293:1979–85.CrossRefGoogle Scholar
  15. 15.
    Abdel-Rahman WM, Ollikainen M, Kariola R, et al. Comprehensive characterization of HNPCC-related colorectal cancers reveals striking molecular features in families with no germline mismatch repair gene mutations. Oncogene. 2005;24:1542–51.CrossRefGoogle Scholar
  16. 16.
    Kohda M, Kumamoto K, Eguchi H, et al. Rapid detection of germline mutations for hereditary gastrointestinal polyposis/cancers using HaloPlex target enrichment and high-throughput sequencing technologies. Familial Cancer. 2016;15:553–62.CrossRefGoogle Scholar
  17. 17.
    Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–32.CrossRefGoogle Scholar
  18. 18.
    Lynch HT, de la Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet. 1999;36:801–18.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lynch HT, Lynch JF, Attard TA. Diagnosis and management of hereditary colorectal cancer syndromes: Lynch syndrome as a model. CMAJ. 2009;181:273–80.CrossRefGoogle Scholar
  20. 20.
    Sehgal R, Sheahan K, O'Connell PR, Hanly AM, Martin ST, Winter DC. Lynch syndrome: an updated review. Genes (Basel). 2014;5:497–507.CrossRefGoogle Scholar
  21. 21.
    Ishida H, Yamaguchi T, Tanakaya K, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the clinical practice of hereditary colorectal cancer (translated version). J Anus Rectum Colon. 2018;2:S1–S51.CrossRefGoogle Scholar
  22. 22.
    Baglietto L, Lindor NM, Dowty JG, et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J Natl Cancer Inst. 2010;102:193–201.CrossRefGoogle Scholar
  23. 23.
    Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology. 2008;135:419–28.CrossRefGoogle Scholar
  24. 24.
    Abbas O, Mahalingam M. Cutaneous sebaceous neoplasms as markers of Muir-Torre syndrome: a diagnostic algorithm. J Cutan Pathol. 2009;36:613–9.CrossRefGoogle Scholar
  25. 25.
    Parry S, Win AK, Parry B, et al. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut. 2011;60:950–7.CrossRefGoogle Scholar
  26. 26.
    Kim TJ, Kim ER, Hong SN, et al. Survival outcome and risk of metachronous colorectal cancer after surgery in Lynch Syndrome. Ann Surg Oncol. 2017;24:1085–92.CrossRefGoogle Scholar
  27. 27.
    Adachi M, Banno K, Yanokura M, et al. Risk-reducing surgery in hereditary gynecological cancer: clinical applications in Lynch syndrome and hereditary breast and ovarian cancer. Mol Clin Oncol. 2015;3:267–73.CrossRefGoogle Scholar
  28. 28.
    Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–27.CrossRefGoogle Scholar
  29. 29.
    Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26.CrossRefGoogle Scholar
  30. 30.
    Sinicrope FA, Foster NR, Thibodeau SN, et al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst. 2011;103:863–75.CrossRefGoogle Scholar
  31. 31.
    Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.CrossRefGoogle Scholar
  32. 32.
    Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–26.CrossRefGoogle Scholar
  33. 33.
    Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 Study. J Clin Oncol. 2016;34:2460–7.CrossRefGoogle Scholar
  34. 34.
    Alley EW, Lopez J, Santoro A, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017;18:623–30.CrossRefGoogle Scholar
  35. 35.
    Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.CrossRefGoogle Scholar
  36. 36.
    Balmaña J, Balaguer F, Cervantes A, Arnold D, ESMO Guidelines Working Group. Familial risk-colorectal cancer: ESMO clinical practice guidelines. Ann Oncol. 2013;24:vi73–80.CrossRefGoogle Scholar
  37. 37.
    Burn J, Gerdes AM, Macrae F, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378:2081–7.CrossRefGoogle Scholar
  38. 38.
    Järvinen HJ, Aarnio M, Mustonen H, et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology. 2000;118:829–34.CrossRefGoogle Scholar
  39. 39.
    Vasen HF, Taal BG, Nagengast FM, et al. Hereditary nonpolyposis colorectal cancer: results of long-term surveillance in 50 families. Eur J Cancer. 1995;31A:1145–8.CrossRefGoogle Scholar
  40. 40.
    Dove-Edwin I, Sasieni P, Adams J, Thomas HJ. Prevention of colorectal cancer by colonoscopic surveillance in individuals with a family history of colorectal cancer: 16 year, prospective, follow-up study. BMJ. 2005;331:1047.CrossRefGoogle Scholar
  41. 41.
    Vasen HF, Abdirahman M, Brohet R, et al. One to 2-year surveillance intervals reduce risk of colorectal cancer in families with Lynch syndrome. Gastroenterology. 2010;138:2300–6.CrossRefGoogle Scholar
  42. 42.
    Vasen HF, Blanco I, Aktan-Collan K, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013;62:812–23.CrossRefGoogle Scholar
  43. 43.
    National Clinical Practice Guidelines in Oncology. Genetic/familial high-risk assessment: colorectal version 3. 2017. https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf. Accessed 10 Oct 2017.
  44. 44.
    Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW, American College of Gastroenterology. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62.CrossRefGoogle Scholar
  45. 45.
    Aretz S, Uhlhaas S, Caspari R, et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet. 2004;12:52–8.CrossRefGoogle Scholar
  46. 46.
    Nielsen M, Franken PF, Reinards TH, et al. Multiplicity in polyp count and extracolonic manifestations in 40 Dutch patients with MYH associated polyposis coli (MAP). J Med Genet. 2005;42:e54.CrossRefGoogle Scholar
  47. 47.
    Nieuwenhuis MH, Bülow S, Björk J, et al. Genotype predicting phenotype in familial adenomatous polyposis: a practical application to the choice of surgery. Dis Colon Rectum. 2009;52:1259–63.CrossRefGoogle Scholar
  48. 48.
    Petersen GM, Slack J, Nakamura Y. Screening guidelines and premorbid diagnosis of familial adenomatous polyposis using linkage. Gastroenterology. 1991;100:1658–64.CrossRefGoogle Scholar
  49. 49.
    Byrne RM, Tsikitis VL. Colorectal polyposis and inherited colorectal cancer syndromes. Ann Gastroenterol. 2018;31:24–34.PubMedGoogle Scholar
  50. 50.
    Vasen HF, Tomlinson I, Castells A. Clinical management of hereditary colorectal cancer syndromes. Nat Rev Gastroenterol Hepatol. 2015;12:88–97.CrossRefGoogle Scholar
  51. 51.
    Fallen T, Wilson M, Morlan B, Lindor NM. Desmoid tumors—a characterization of patients seen at Mayo Clinic 1976-1999. Familial Cancer. 2006;5:191–4.CrossRefGoogle Scholar
  52. 52.
    Belchetz LA, Berk T, Bapat BV, Cohen Z, Gallinger S. Changing causes of mortality in patients with familial adenomatous polyposis. Dis Colon Rectum. 1996;39:384–7.CrossRefGoogle Scholar
  53. 53.
    Burt RW, Leppert MF, Slattery ML, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;127:444–51.CrossRefGoogle Scholar
  54. 54.
    Vasen HF, Möslein G, Alonso A, et al. Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut. 2008;57:704–13.CrossRefGoogle Scholar
  55. 55.
    Kartheuser A, Stangherlin P, Brandt D, Remue C, Sempoux C. Restorative proctocolectomy and ileal pouch-anal anastomosis for familial adenomatous polyposis revisited. Familial Cancer. 2006;5:241–60.CrossRefGoogle Scholar
  56. 56.
    Church J. In which patients do I perform IRA, and why? Familial Cancer. 2006;5:237–40.CrossRefGoogle Scholar
  57. 57.
    Koskenvuo L, Mustonen H, Renkonen-Sinisalo L, Järvinen HJ, Lepistö A. Comparison of proctocolectomy and ileal pouch-anal anastomosis to colectomy and ileorectal anastomosis in familial adenomatous polyposis. Familial Cancer. 2015;14:221–7.CrossRefGoogle Scholar
  58. 58.
    Ueno H, Kobayashi H, Konishi T, et al. Prevalence of laparoscopic surgical treatment and its clinical outcomes in patients with familial adenomatous polyposis in Japan. Int J Clin Oncol. 2016;21:713–22.CrossRefGoogle Scholar
  59. 59.
    Konishi T, Ishida H, Ueno H, et al. Feasibility of laparoscopic total proctocolectomy with ileal pouch-anal anastomosis and total colectomy with ileorectal anastomosis for familial adenomatous polyposis: results of a nationwide multicenter study. Int J Clin Oncol. 2016;21:953–61.CrossRefGoogle Scholar
  60. 60.
    Spigelman AD, Williams CB, Talbot IC, Domizio P, Phillips RK. Upper gastrointestinal cancer in patients with familial adenomatous polyposis. Lancet. 1989;2:783–5.CrossRefGoogle Scholar
  61. 61.
    Alexander JR, Andrews JM, Buchi KN, Lee RG, Becker JM, Burt RW. High prevalence of adenomatous polyps of the duodenal papilla in familial adenomatous polyposis. Dig Dis Sci. 1989;34:167–70.CrossRefGoogle Scholar
  62. 62.
    Yao T, Ida M, Ohsato K, Watanabe H, Omae T. Duodenal lesions in familial polyposis of the colon. Gastroenterology. 1977;73:1086–92.PubMedGoogle Scholar
  63. 63.
    Chung RS, Church JM, vanStolk R. Pancreas-sparing duodenectomy: indications, surgical technique, and results. Surgery. 1995;117:254–9.CrossRefGoogle Scholar
  64. 64.
    Nieuwenhuis MH, Mathus-Vliegen EM, Baeten CG, et al. Evaluation of management of desmoid tumours associated with familial adenomatous polyposis in Dutch patients. Br J Cancer. 2011;104:37–42.CrossRefGoogle Scholar
  65. 65.
    Hansmann A, Adolph C, Vogel T, Unger A, Moeslein G. High-dose tamoxifen and sulindac as first-line treatment for desmoid tumors. Cancer. 2004;100:612–20.CrossRefGoogle Scholar
  66. 66.
    Church J, Lynch C, Neary P, LaGuardia L, Elayi E. A desmoid tumor-staging system separates patients with intra-abdominal, familial adenomatous polyposis-associated desmoid disease by behavior and prognosis. Dis Colon Rectum. 2008;51:897–901.CrossRefGoogle Scholar
  67. 67.
    Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol. 2006;101:385–98.CrossRefGoogle Scholar
  68. 68.
    Koskenvuo L, Renkonen-Sinisalo L, Järvinen HJ, Lepistö A. Risk of cancer and secondary proctectomy after colectomy and ileorectal anastomosis in familial adenomatous polyposis. Int J Color Dis. 2014;29:225–30.CrossRefGoogle Scholar
  69. 69.
    Campos FG, Perez RO, Imperiale AR, Seid VE, Nahas SC, Cecconello I. Surgical treatment of familial adenomatous polyposis: ileorectal anastomosis or restorative proctolectomy? Arq Gastroenterol. 2009;46:294–9.CrossRefGoogle Scholar
  70. 70.
    Dunlop MG, Farrington SM, Carothers AD, et al. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet. 1997;6:105–10.CrossRefGoogle Scholar
  71. 71.
    Phillips M, Dicks-Mireaux C, Kingston J, et al. Hepatoblastoma and polyposis coli (familial adenomatous polyposis). Med Pediatr Oncol. 1989;17:441–7.CrossRefGoogle Scholar
  72. 72.
    Iwama T, Mishima Y. Mortality in young first-degree relatives of patients with familial adenomatous polyposis. Cancer. 1994;73:2065–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Gastroenterological Surgery, Faculty of MedicineKagawa UniversityMiki-choJapan
  2. 2.Department of Digestive Tract and General Surgery, Saitama Medical CenterSaitama Medical UniversityKawagoeJapan

Personalised recommendations