Nonlinear Dynamical Model for DNA

  • Haci Mehmet Baskonus
  • Carlo CattaniEmail author
Part of the Trends in Mathematics book series (TM)


This chapter deals with a nonlinear dynamical system arising in the analysis of the double-chain model in deoxyribonucleic acid (DNA). Bernoulli sub-equation function method and modified exp \( \left( { -\Omega \left(\upxi \right)} \right) \)-expansion function method to obtain some novel dynamical structures to the nonlinear dynamical system are used. We construct some new exponential, hyperbolic and complex periodic wave solutions to this model. Under some suitable values of parameters, we plot the 2D and 3D graphics of the solutions obtained in this study. All the solutions found in this study satisfy the nonlinear dynamical system. Moreover, these solutions can be used to explain some new significant physical meanings of the nonlinear dynamical model for DNA.


The new double-chain model Bernoulli sub-equation function method Exponential Rational Complex function solutions 


  1. 1.
    A. Atangana, J.F. Botha, Analytical solution of the groundwater flow equation obtained via homotopy decomposition method. J. Earth Sci. Climatic Change 3(2), 115 (2012)Google Scholar
  2. 2.
    A. Atangana, A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women. Neural Comput. Appl. 26(8), 1895–1903 (2015)CrossRefGoogle Scholar
  3. 3.
    A.M. Wazwaz, Abundant solutions of various physical features for the (2 + 1)-dimensional modified KdV-Calogero-Bogoyavlenskii-Schiff equation. Nonlinear Dyn. 89(3), 1727–1732 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.M. Wazwaz, S.A. El-Tantawy, A new integrable (3 + 1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A.M. Wazwaz, Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83(1–2), 591–596 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    W.X. Ma, T. Huang, Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(6), 065003 (2010)CrossRefGoogle Scholar
  7. 7.
    W.X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    W.X. Ma, A. Abdeljabbar, A bilinear Bäcklund transformation of a (3 + 1)-dimensional generalized KP equation. Appl. Mathe. Lett. 25(10), 1500–1504 (2012)CrossRefGoogle Scholar
  9. 9.
    H.M. Baskonus, T.A. Sulaiman, H. Bulut, On the novel wave behaviors to the coupled nonlinear maccari’s system with complex structure. Optik 131, 1036–1043 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Bulut, T.A. Sulaiman, H.M. Baskonus, New solitary and optical wave structures to the korteweg-de vries equation with dual-power law nonlinearity. Opt. Quant. Electron. 48(564), 1–14 (2016)Google Scholar
  11. 11.
    H. Bulut, T.A. Sulaiman, H.M. Baskonus, A.A. Sandulyak, New solitary and optical wave structures to the (1 + 1)-dimensional combined KdV-mKdV equation. Optik 135, 327–336 (2017)CrossRefGoogle Scholar
  12. 12.
    D. Xu, Integro-differential equations and delay integral inequalities. Tohoku Mathe. J. 44, 365–378 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Huang, D. Xu, Z. Yang, Dissipativity and periodic attractor for non-autonomous neural networks with time-varying delays. Neurocomputing 70, 2953–2958 (2007)CrossRefGoogle Scholar
  14. 14.
    D. Xu, Z. Yang, Impulsive delay differential inequality and stability of neural networks. J. Mathe. Anal. Appl. 305, 107–120 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Xu, W. Zhu, S. Long, Global exponential stability of impulsive integro-differential equation. Nonlinear Anal. 64, 2805–2816 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Z. Yang, D. Xu, Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays. Appl. Math. Comput. 177, 63–78 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    D. Xu, Z. Yang, Attracting and invariant sets for a class of impulsive functional differential equations. J. Math. Anal. Appl. 329, 1036–1044 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer Academic, Dordrecht, 1992)CrossRefGoogle Scholar
  19. 19.
    A. Halanay, Differential Equations: Stability, Oscillations, Time Lages (Academic Press, New York, 1966)zbMATHGoogle Scholar
  20. 20.
    D. Xu, X. Wang, A new nonlinear integro-differential inequality and its application. Appl. Math. Lett. 22(11), 1721–1726 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Blanco, Socio-territorial inequality and differential mobility. J. Transp. Geogr. (2017)Google Scholar
  22. 22.
    Y. Sun, Absence of nonnegative solutions to the system of differential inequalities on manifolds. J. Math. Anal. Appl. 450(2), 901–914 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    B. Qian, Differential Harnack inequalities and Perelman type entropy formulae for subelliptic operators. Nonlinear Anal. 155, 163–175 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    L.P. de Nápoli, J.P. Pinasco, Lyapunov-type inequalities for partial differential equations. J. Funct. Anal. 270(6), 1995–2018 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Chunga, T. Toulkeridis, First evidence of aleo-tsunami deposits of a major historic event in Ecuador. J. Tsunami Soc. Int. 33(1), 55–69 (2014)Google Scholar
  26. 26.
    K. De-Xing, L. Sen-Yue, Z. Jin, Nonlinear dynamics in a new double chain-model of DNA. Commun. Theor. Phys. 36, 737–742 (2001)CrossRefGoogle Scholar
  27. 27.
    W. Alka, A. Goyal, C.N. Kumar, Nonlinear dynamics of dna-riccati generalized solitary wave solutions. Phys. Lett. A 375, 480–483 (2011)CrossRefGoogle Scholar
  28. 28.
    M.A.E. Abdelrahman, E.H.M. Zahran, M.M.A. Khater, The exp(-ϕ(xi))-expansion method and its application for solving nonlinear evolution equations. Int. J. Mod. Nonlinear Theory Appl. 4, 37–47 (2015)Google Scholar
  29. 29.
    S.J. Webb, A.D. Booth, Absorption of microwaves by microorganisms. Nature 222, 1199–1200 (1969)CrossRefGoogle Scholar
  30. 30.
    M.L. Swicord, C.C. Davis, Microwave absorption of DNA between 8 and 12 GHz. Biopolymers 21, 2453–2460 (1982)CrossRefGoogle Scholar
  31. 31.
    M.L. Swicord, C.C. Davis, An optical method of investigating the microwave absorption characteristics of DNA and other biomolecules in solution. Bioelectromagnetics 4, 21–42 (1983)CrossRefGoogle Scholar
  32. 32.
    G. Gabriel, E.H. Grant, R. Tata, P.R. Brown, B. Gestblom, E. Noreland, Microwave absorption in aqueous solutions of DNA. Nature 328, 145–146 (1987)CrossRefGoogle Scholar
  33. 33.
    L.V. Yakushevich, Nonlinear Physics of DNA. Wiley, United Kingdom, ISBN: 10 0471978248 (1998)Google Scholar
  34. 34.
    M. Bixon, J. Jortner, Energetic control and kinetics of hole migration in DNA. J. Phys. Chem. 104, 3906–3913 (2000)CrossRefGoogle Scholar
  35. 35.
    P.T. Henderson , D. M. Jones, Y. Kan, Hampikian, Schuster GB, Long-distance charge transport in duplex DNA: the phonon assisted polaron-like hopping mechanism. Proc. Natl. Acad. Sci. USA 96, 8353–8358 (1999)CrossRefGoogle Scholar
  36. 36.
    R. Bruinsma, G. Gruner, M.R. D’Orsogna, J. Rudnik, Fluctuation-facilitated charge migration along DNA. Phys. Rev. Lett. 85, 4393–4396 (2000)CrossRefGoogle Scholar
  37. 37.
    G. Gabriel, E.H. Grant, R. Tata, P.R. Brown, B. Gestblom, E. Noreland, Microwave absorption in aqueous solutions of DNA. Nature 328, 145–146 (1987)CrossRefGoogle Scholar
  38. 38.
    L.L. Van Zandt, Resonant microwave absorption by dissolved DNA. Phys. Rev. Lett. 57, 2085–2087 (1986)CrossRefGoogle Scholar
  39. 39.
    L.L. Van Zandt, M.E. Davis, Theory of anomalous resonant absorption of DNA at microwave frequencies. J. Biomol. Struct. Dyn. 3, 1045–1053 (1986)CrossRefGoogle Scholar
  40. 40.
    V. Muto, A.C. Scott, P.L Christiansen, Microwave and thermal generation of solitons in DNA. J. Phys. 50(C3, suppl. N3), 217–222 (1989)CrossRefGoogle Scholar
  41. 41.
    V. Muto, J. Holding, P.L. Christiansen, A.C. Scott, Solitons in DNA. J. Biomol. Struct. Dyn. 5, 873–894 (1988)CrossRefGoogle Scholar
  42. 42.
    Ch.T. Zhang, Harmonic and subharmonic resonances of microwave absorption in DNA. Phys. Rev. A 40, 2148–2153 (1989)CrossRefGoogle Scholar
  43. 43.
    M.D. Barkley, B.H. Zimm, Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA. J. Chem. Phys. 70, 2991–3007 (1979)CrossRefGoogle Scholar
  44. 44.
    B. Zheng, Application of a generalized bernoulli sub-ode method for finding traveling solutions of some nonlinear equations. WSEAS Trans. Math. 7(11), 618–626 (2012)Google Scholar
  45. 45.
    M.N. Alam, M.G. Hafez, M.A. Akbar, H.O. Roshid, Exact solutions to the (2 + 1)-Dimensional boussinesq equation via exp(Φ(η))-expansion Method. J. Sci. Res. 7(3), 1–10 (2015)CrossRefGoogle Scholar
  46. 46.
    M.G. Hafez, Md. Nur Alam, M. Ali Akbar, Application of the exp exp(−Φ(η))-expansion method to find exact solutions for the solitary wave equation in an unmagnatized dusty plasma. World Appl. Sci. J. 32(10), 2150–2155 (2014)Google Scholar
  47. 47.
    F. Ozpinar, H.M. Baskonus, H. Bulut, On the complex and hyperbolic structures for the (2 + 1)-dimensional boussinesq water equation. Entropy 17(12), 8267–8277 (2015)CrossRefGoogle Scholar
  48. 48.
    H.M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25(3), 035022, (8 pp) (2016)CrossRefGoogle Scholar
  49. 49.
    H. Bulut, H.M. Baskonus, New complex hyperbolic function solutions for the (2 + 1)-dimensional dispersive long water-wave system. Math. Comput. Appl. 21(2), 6 (2016)MathSciNetGoogle Scholar
  50. 50.
    H.M. Baskonus, D.A. Koç, H.B. Dark, New travelling wave solutions to the nonlinear evolution equation. Optik- Int. J. Light Electron. Opt. 127, 8043–8055 (2016)CrossRefGoogle Scholar
  51. 51.
    Z.F. Koçak, H. Bulut, H.M. Baskonus, D.A. Koc, Prototype traveling wave solutions of new coupled konno-oono equation. Optik- Int. J. Light Electron Opt. 127, 10786–10794 (2016)CrossRefGoogle Scholar
  52. 52.
    H.M. Baskonus, H. Bulut, F.B.M. Belgacem, Analytical solutions for nonlinear long-short wave interaction systems with highly complex structure. J. Comput. Appl. Math. 312, 257–266 (2017)MathSciNetCrossRefGoogle Scholar
  53. 53.
    H. Bulut, G. Yel, Haci mehmet baskonus. Novel structure to the coupled nonlinear maccari’s system by using modified trial equation method, advanced mathematical models and applications 7(2), 14–19 (2017)Google Scholar
  54. 54.
    O.A. Ilhan, H. Bulut, T.A. Sulaiman, H.M. Baskonus, Dynamic of solitary wave solutions in some nonlinear pseudo parabolic models and Dodd-Bullough-Mikhailov equation. Indian J. Phys. Accepted (2018)Google Scholar
  55. 55.
    T.A. Sulaiman, T.A., H. Bulut, H.M. Baskonus, Investigation of various soliton solutions to the Heisenberg ferromagnetic spin chain equation. J. Electromagn. Waves Appl. Accepted, (2018)Google Scholar
  56. 56.
    M.L. Wang, X.Z. Li, J. Zhang, The (G′/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringMunzur UniversityTunceliTurkey
  2. 2.Engineering School (DEIM)University of TusciaViterboItaly

Personalised recommendations