Advertisement

A New Class of Generalized Convex Functions and Integral Inequalities

  • Mohamed Jleli
  • Donal O’Regan
  • Bessem Samet
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In this chapter, we introduce the class of \(\eta _\varphi \)-convex functions which is larger than the class of \(\eta \)-convex functions introduced by Gordji et al. (Preprint Rgmia Res Rep Coll 1–14, 2015 [1]). Some Fejér type integral inequalities are established for this new class of functions. As consequences, we deduce some Hermite–Hadamard type inequalities involving different kinds of fractional integrals.

References

  1. 1.
    M.E. Gordji, M.R. Delavar, S.S. Dragomir, Some inequality related to \(\eta \)-convex function. Preprint Rgmia Res. Rep. Coll. 1–14 (2015)Google Scholar
  2. 2.
    A. Aleman, On some generalizations of convex sets and convex functions. Anal. Numer. Theor. Approx. 14, 1–6 (1985)MathSciNetzbMATHGoogle Scholar
  3. 3.
    M.R. Delavar, S.S. Dragomir, On \(\eta \)-convexity. Math. Inequal. Appl. 20(1), 203–216 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    D.H. Hyers, S.M. Ulam, Approximately convex functions. Proc. Am. Math. Soc. 3, 821–828 (1952)MathSciNetCrossRefGoogle Scholar
  5. 5.
    O.L. Mangasarian, Pseudo-convex functions. SIAM J. Control 3, 281–290 (1965)MathSciNetzbMATHGoogle Scholar
  6. 6.
    V.G. Miheşan, A generalization of the convexity, in Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, Romania (1993)Google Scholar
  7. 7.
    G.H. Toader, Some generalisations of the convexity, in Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania (1984), pp. 329–338Google Scholar
  8. 8.
    S. Varosanec, On h-convexity. J. Math. Anal. Appl. 326(1), 303–311 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    X.M. Yang, E-convex sets, E-convex functions and E-convex programming. J. Optim. Theory Appl. 109, 699–704 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    X.M. Yang, S.Y. Liu, Three kinds of generalized convexity. J. Optim. Theory. Appl. 86, 501–513 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M.A. Khan, Y. Khurshid, T. Ali, Hermite-Hadamard inequality for fractional integrals via \(\eta \)-convex functions. Acta Math. Univ. Comenian. 86(1), 153–164 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    A.G. Azpeitia, Convex functions and the Hadamard inequality. Rev. Colombiana Mat. 28, 7–12 (1994)MathSciNetzbMATHGoogle Scholar
  13. 13.
    S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S.S. Dragomir, C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University (2000)Google Scholar
  15. 15.
    M. Jleli, B. Samet, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function. J. Nonlinear Sci. Appl. 9, 1252–1260 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M.A. Noor, Hermite-Hadamard inequality for log-preinvex functions. J. Math. Anal. Approx. Theory 2, 126–131 (2007)MathSciNetzbMATHGoogle Scholar
  17. 17.
    M.A. Noor, K.I. Noor, M.U. Awan, Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    M.R. Delavar, M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities. SpringerPlus 5, 1661 (2016)CrossRefGoogle Scholar
  19. 19.
    M.R. Delavar, M. De La Sen, On generalization of Fejér type inequalities. Commun. Math. Appl. 8(1), 31–43 (2017)Google Scholar
  20. 20.
    M.Z. Sarikaya, S. Erden, On the Hermite-Hadamard-Fejér type integral inequality for convex function. Turk. J. Anal. Number Theory 2, 85–89 (2014)CrossRefGoogle Scholar
  21. 21.
    M.Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Modell. 57, 2403–2407 (2013)CrossRefGoogle Scholar
  22. 22.
    E. Sest, N.E. Ozdemir, S.S. Dragomir, On Hadamard-type inequalities involving several kinds of convexity. J. Inequal. Appl. Art. ID 286845, 12 pp (2010)Google Scholar
  23. 23.
    A.A. Kilbas, O.I. Marichev, S.G. Samko, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Switzerland, 1993)zbMATHGoogle Scholar
  24. 24.
    M. Kirane, B. Samet, Discussion on some inequalities via fractional integrals. J. Inequal. Appl. 2018, 19 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mathematics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.School of Mathematics, Statistics and Applied MathematicsNational University of IrelandGalwayIreland

Personalised recommendations