Advertisement

Lyapunov Inequalities for Some Differential Equations with Integral-Type Boundary Conditions

  • Rui A. C. FerreiraEmail author
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In this work, we derive a Lyapunov-type inequality for a fractional problem depending on an integral boundary condition. We believe our results to be new even for the classical integer-order derivative case.

Notes

Acknowledgements

Rui Ferreira was supported by the “Fundação para a Ciência e a Tecnologia (FCT)” through the program “Investigador FCT” with reference IF/01345/2014.

References

  1. 1.
    I. Cabrera, K. Sadarangani, B. Samet, Hartman-Wintner-type inequalities for a class of nonlocal fractional boundary value problems. Math. Methods Appl. Sci. 40(1), 129–136 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Dhar, Q. Kong, M. McCabe, Fractional boundary value problems and Lyapunov-type inequalities with fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2016, no. 43, 16 pGoogle Scholar
  3. 3.
    R.A.C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16(4), 978–984 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    R.A.C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J. Math. Anal. Appl. 412(2), 1058–1063 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R.A.C. Ferreira, Lyapunov-type inequalities for some sequential fractional boundary value problems. Adv. Dyn. Syst. Appl. 11(1), 33–43 (2016)MathSciNetGoogle Scholar
  6. 6.
    R.A.C. Ferreira, Existence and uniqueness of solutions for two-point fractional boundary value problems. Electron. J. Differ. Equ. 2016, Paper No. 202, 5 pGoogle Scholar
  7. 7.
    R.A.C. Ferreira, Lyapunov-type inequality for an anti-periodic fractional boundary value problem. Fract. Calc. Appl. Anal. 20(1), 284–291 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    R.A.C. Ferreira, RACSAM (2018).  https://doi.org/10.1007/s13398-017-0462-z
  9. 9.
    M. Jleli, B. Samet, Lyapunov-type inequalities for fractional boundary-value problems. Electron. J. Differ. Equ. 2015, no. 88, 11 pGoogle Scholar
  10. 10.
    M. Jleli, B. Samet, Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 18(2), 443–451 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Jleli, M. Kirane, B. Samet, Lyapunov-type inequalities for fractional partial differential equations. Appl. Math. Lett. 66, 30–39 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Jleli, J.J. Nieto, B. Samet, Lyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 16, 17 pGoogle Scholar
  13. 13.
    N. Pathak, Lyapunov-type inequality for fractional boundary value problems with Hilfer derivative. Math. Inequal. Appl. 21(1), 179–200 (2018)MathSciNetzbMATHGoogle Scholar
  14. 14.
    J. Rong, C. Bai, Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions. Adv. Differ. Equ. 2015, 2015:82, 10 pGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Grupo Física-Matemática, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  2. 2.Departamento de Ciências e TecnologiaUniversidade AbertaLisboaPortugal

Personalised recommendations