Advertisement

Existence Theory on Modular Metric Spaces

  • Anantachai Padcharoen
  • Parin Chaipunya
  • Poom Kumam
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

Since the year 1922, Banach’s contraction principle, due to its simplicity and usability, has become a popular tool in modern analytics, particularly in nonlinear analysis, including the use of equations, differential equations, variance, equilibrium problems, and much more (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).

References

  1. 1.
    Z. Golubović, Z. Kadelburg, S. Radenović, Coupled coincidence points of mappings in ordered partial metric spaces. Abstr. Appl. Anal. 2012, Article ID 192581, 18 p (2012)Google Scholar
  2. 2.
    M.A. Khamsi, A. Latif, H. Al-Sulami, KKM and Ky Fan theorems in modular function spaces. Fixed Point Theory Appl. 2011, 57 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.A. Khamsi, Quasicontraction mappings in modular spaces without \(\Delta _{2}\)-condition. Fixed Point Theory Appl. 2008, Article ID 916187, 6 p (2008)Google Scholar
  4. 4.
    K. Kuaket, P. Kumam, Fixed points of asymptotic pointwise contractions in modular spaces. Appl. Math. Lett. 24, 1795–1798 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Amini-harandini, Fixed point theory for generalized quasicontraction maps in vector modular spaces. Comp. Math. Appl. 61, 1891–1897 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Aydi, H.K. Nashine, B. Samet, H. Yazidi, Coincidence and common fixed point results in partially ordered cone metric spaces and applications to integral equations. Nonlinear Anal. 74(17), 6814–6825 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Aydi, Common fixed point results for mappings satisfying (\(\psi \),\(\phi \))-weak contractions in ordered partial metric spaces. Int. J. Math. Stat. 12(2), 53–64 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued \((f,\alpha, \beta )\)-weak contraction mappings. Appl. Math. Lett. 24, 460–465 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    W. Sintunavarat, Y.J. Cho, P. Kumam, Common fixed point theorems for \(c\)-distance in ordered cone metric spaces. Comput. Math. Appl. 62, 1969–1978 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Mongkolkeha, P. Kumam, Fixed point theorems for generalized asymptotic pointwise \(\rho \)-contraction mappings involving orbits in modular function spaces. Appl. Math. Lett.  https://doi.org/10.1016/j.aml.2011.11.027 (2012) (in press)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Geraghty, On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Amini-Harandi, H. Emani, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Anal. 72, 2238–2242 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Eshaghi Gordji, M. Ramezani, Y.J. Cho, S. Pirbavafa, A generalization of Geraghty’s theorem in partially ordered metric spaces and application to ordinary differential equations. Fixed point Theory Appl. 2012, 74 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    V.V. Chistyakov, Modular metric spaces, I: basic concepts. Nonlinear Anal. 72, 1–14 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Nakano, in Modulared Semi-Ordered Linear Spaces, vol. 1 (Tokyo Math. Book Ser.) (Maruzen Co., Tokyo, 1950)Google Scholar
  16. 16.
    H. Nakano, in Topology and Linear Topological Spaces, vol. 3 (Tokyo Math. Book Ser.) (Maruzen Co., Tokyo, 1951)Google Scholar
  17. 17.
    P. Kumam, Some geometric properties and fixed point theorem in modular spaces, in Fixed Point Theorem and Its Applications, ed. by J. Garcia Falset, L. Fuster, B. Sims (Yokohama Publishers, Yokohama, 2004), pp. 173–188Google Scholar
  18. 18.
    P. Kumam, Fixed point theorems for nonexpansive mappings in modular spaces. Archivum Mathematicum (BRONO) 40(4), 345–353 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    P. Kumam, On uniform opial condition and uniform Kadec-Klee property in modular spaces. J. Interdisc. Math. 8(3), 377–385 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    P. Kumam, On nonsquare and Jordan-Von Neumann constants of modular spaces. SE Asian Bull. Math. 30(1), 67–77 (2006)MathSciNetzbMATHGoogle Scholar
  21. 21.
    C. Mongkolkeha, P. Kumam, Common fixed point for generalized weak contraction mapping in Modular spaces. Scientiae Mathematicae Japonicae, online, e-2012, 117–127Google Scholar
  22. 22.
    Y.J. Cho, R. Saadati, G. Sadeghi, Quasi-contractive mappings in modular metric spaces. J. Appl. Math. 2012, Article ID 907951, 5 p (2012)Google Scholar
  23. 23.
    P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed-point theorems for multivalued mappings in modular metric spaces. Abstr. Appl. Anal. 2012, Article ID 503504, 14 p (2012)Google Scholar
  24. 24.
    C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 93 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Chaipunya, J.Y. Cho, P. Kumam, Geraghty-type theorems in modular metric spaces with an application to partial differential equation. Adv. Differ. Equ. 2012, Article ID 83 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M.R. Taskovic, A generalization of Banach’s contraction principle. Nouvell serie tome. 23(37), 179–191 (1978)MathSciNetzbMATHGoogle Scholar
  27. 27.
    L.J. Ćirić, A generalization of Banachs contraction principle. Proc. Am. Math. Soc. 45, 267273 (1974)MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Czerwik, Contraction mappings in \(b\)-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)MathSciNetzbMATHGoogle Scholar
  29. 29.
    T. Suzuki, Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. App. 253(2), 440458 (2001)MathSciNetGoogle Scholar
  30. 30.
    H.L. Guang, Z. Xian, Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl 332, 14681476 (2007)MathSciNetGoogle Scholar
  31. 31.
    B. Samet, C. Vetro, P. Vetro, Fixed point theorems for \(\alpha \)-\(\psi \)-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Gopal, C. Vetro, M. Abbas, D.K. Patel, Some coincidence and periodic points results in a metric space endowed with a graph and applications. Banach J. Math. Anal. 9(3), 128–139 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Gopal, M. Abbas, D.K. Patel, C. Vetro, Fixed points of \(\alpha \)-type \(F\)-contractive mappings with anapplication to nonlinear fractional differential equation. Acta Math. Scientia 36B(3), 1–14 (2016)zbMATHGoogle Scholar
  34. 34.
    N. Hussain, A. Latif, I. Iqbal, Fixed point results for generalized \(F\)-contractions in modular metric and fuzzy metric spaces. Fixed Point Theory Appl. 2015, 158 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Padcharoen, D. Gopal, P. Chaipunya, P. Kumam, Fixed point and periodic point results \(\alpha \)-type \(F\)-contractions in modular metric spaces. Fixed Point Theory Appl. 2016 12 p (2016)Google Scholar
  36. 36.
    D. Wardowski, Fixed points of new type of contractive mappings in complete metric space. Fixed Point Theory Appl. (2012).  https://doi.org/10.1186/1687-1812-2012-94MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    A.N.N. Abdou, M.A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces. Fixed Point Theory Appl. (1), 163 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Jachymski, The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 1(136), 1359–1373 (2008)MathSciNetzbMATHGoogle Scholar
  39. 39.
    A.C. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132(5), 1435–1443 (2004)MathSciNetCrossRefGoogle Scholar
  40. 40.
    G. Chartrand, L. Lesniak, P. Zhang, Graphs & Digraphs (CRC Press, New York, 2011)zbMATHGoogle Scholar
  41. 41.
    R. Johnsonbaugh, Discrete Mathematics (Prentice Hall, New York, 1997)zbMATHGoogle Scholar
  42. 42.
    M.R. Alfuraidan, On monotone Ćirić quasi-contraction principle for mappings with a graph. Fixed Point Theory Appl. 2015, 93 11 p (2015)Google Scholar
  43. 43.
    A. Padcharoen, P. Kumam, D. Gopal, Coincidence and periodic point results in a modular metric space endowed with a graph and applications. Creat. Math. Inform. 26(1), 95–104 (2017)MathSciNetzbMATHGoogle Scholar
  44. 44.
    G.S. Jeong, B.E. Rhoades, Maps for which \(F(T) = F(T^n)\). Fixed Point Theory Appl. 6, 87–131 (2005)Google Scholar
  45. 45.
    C. Chifu, G. Petrusel, Generalized contractions in metric space endowed with a graph. Fixed Point Theory Appl. 2012, 161, 9 p (2012)Google Scholar
  46. 46.
    W. Sintunavarat, P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. J. Appl. Math. 2011, Article ID 637958, 14 pGoogle Scholar
  47. 47.
    P. Sumalai, P. Kumam, Y.J. Cho, A. Padcharoen, The \((CLR_g)\)-property for coincidence point theorems and Fredholm integral equations in modular metric spaces. Eur. J. Pure Appl. Math. 10(2), 238–254 (2017)MathSciNetzbMATHGoogle Scholar
  48. 48.
    P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kumam, Erratum to “fixed-point theorems for multivalued mappings in modular metric spaces”. Abstr. Appl. Anal. 2012, 2 (2012)zbMATHGoogle Scholar
  49. 49.
    P. Chaipunya, P. Kumam, An observation on set-valued contraction mappings in modular metric spaces. Thai J. Math. 13(1), 9–17 (2015)MathSciNetzbMATHGoogle Scholar
  50. 50.
    S.B. Nadler Jr., Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)MathSciNetCrossRefGoogle Scholar
  51. 51.
    M. Sgroi, C. Vetro, Multi-valued \(F\)-contractions and the solution of certain functional and integral equations. Filomat 27, 1259–1268 (2013)MathSciNetCrossRefGoogle Scholar
  52. 52.
    D. Jain, A. Padcharoen, P. Kumam, D. Gopal, A new approach to study fixed point of multivalued mappings in modular metric spaces and applications. Mathematics 4, 51 (2016).  https://doi.org/10.3390/math4030051CrossRefzbMATHGoogle Scholar
  53. 53.
    S. Moradi, M. Mohammadi Anjedani, E. Analoei, On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation. Int. J. Nonlinear Anal. Appl. 6, 62–68 (2015)zbMATHGoogle Scholar
  54. 54.
    M. Cosentino, P. Vetro, Fixed point results for \(F\)-contractive mappings of Hardy-Rogers-type. Filomat 28(4), 715–722 (2014)MathSciNetCrossRefGoogle Scholar
  55. 55.
    H. Piri, P. Kumam, Some fixed point theorems concerning \(F\)-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 210, 11 p (2014)Google Scholar
  56. 56.
    B.E. Rhoades, Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)MathSciNetCrossRefGoogle Scholar
  57. 57.
    V.V. Chistyakov, Fixed points of modular contractive maps. Doklady Math. 86(1), 515–518 (2012)MathSciNetCrossRefGoogle Scholar
  58. 58.
    V.V. Chistyakov, Modular contractions and their application, in Models, Algorithms, and Technologies for Network Analysis, volume 32 of Springer Proceedings in Mathematics & Statistics, ed. by B. Goldengorin, V.A. Kalyagin, P.M. Pardalos (Springer, New York, 2013), pp. 65–92Google Scholar
  59. 59.
    O. Acar, G. Durmaz, G. Minak, Generalized multivalued \(F\)-contractions on complete metric spaces. Bull. Iranian Math. Soc. 40, 1469–1478 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anantachai Padcharoen
    • 1
  • Parin Chaipunya
    • 1
  • Poom Kumam
    • 1
  1. 1.KMUTT-Fixed Point Theory and Applications Research Group, Theoretical and Computational Science Center (TaCS)King Mongkut’s University of Technology Thonburi (KMUTT)Thrung Khru, BangkokThailand

Personalised recommendations