Advertisement

Liquid Silicon Family Materials(2): SiC

SiC-Ink and SiC Film from Liquid Si
  • Tatsuya Shimoda
Chapter

Abstract

As the second part of liquid silicon family materials, we introduce SiC of which ink (precursor solution) can also be made from CPS. Amorphous silicon carbide (a-SiC) is an advanced material with high thermal conductivity, good chemical stability, and high mechanical strength. Many researchers have fabricated a-SiC by the thermal decomposition of polycarbosilane which is converted into a-SiC by heating [1]. The pyrolysis products of various other polysilanes, including poly(methylsilane), poly(silylenemethylene), and poly(silastyrene), have been investigated as starting materials for polycarbosilane [2–4]. Since most of these previous studies have focused on structural and mechanical properties of polymers and the resultant SiC [5], there has been very few works focusing to develop a semiconducting SiC by thermal decomposition of polycarbosilane.

Here we introduce deposition of amorphous silicon carbide (a-SiC) films via solution process using a polymeric precursor solution consisting of polydihydrosilane with pendant hexyl groups (PSH). Unlike conventional polymeric precursors, this polymer neither requires catalysts nor oxidation for its synthesis and cross-linkage, resulting in sufficient purity used for semiconducting a-SiC.

In Sect. 7.1, polymer-to-ceramic conversion is systematically investigated under various pyrolysis temperatures. The polymer primarily undergoes cross-linking at temperatures above 150 °C with increasing polymer fraction; this cross-linking is followed by incorporation of carbon atoms into an amorphous network at 380 °C. The incorporated carbon atoms in the film are predominantly in the sp3-bonding state with almost no amorphous graphite-like sp2 C-C clusters, leading to marked changes in the film’s properties.

In Sect. 7.2, we investigated the correlation of Si/C stoichiometry between the polymeric precursor solution and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. The results suggested that the excess carbon that did not participate in Si–C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in the resultant a-SiC film was less than 50 at%, i.e., silicon-rich a-SiC.

In Sect. 7.3, we introduce phosphorus-doped a-SiC films (n-type a-SiC), using a polymeric precursor synthesized from a mixture of cyclopentasilane, white phosphorus, and 1-hexyne. The effect of carbon and phosphorus concentrations on the structural, optical, and electrical properties of a-SiC films was studied. The valence and conduction states of these films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy.

In Sect. 7.4, we present p-type a-SiC films prepared using a LVD (liquid vapor deposition) method which is described in Chap.  5. In this time, we used a simple chamber with a vaporized silicon ink consisting of cyclopentasilane, cyclohexene, and decaborane. The incorporation of carbon into the silicon network was induced by the addition of cyclohexene to the silicon ink.

Keywords

Silicon carbide (SiC) SiC-ink Cyclopentasilane (CPS) Liquid vapor deposition (LVD) 

References

  1. 1.
    S. Yajima, J. Hayashi, M. Omori, Chem. Lett. 4, 931 (1975)CrossRefGoogle Scholar
  2. 2.
    Z.-F. Zhang, F. Babonneau, R.M. Laine, Y. Mu, J.F. Harrod, J.A. Rahn, J. Am. Ceram. Soc. 74, 670 (1991)CrossRefGoogle Scholar
  3. 3.
    Q. Liu, H.J. Wu, R. Lewis, G.E. Maciel, L.V. Interrante, Chem. Mater. 11, 2038 (1999)CrossRefGoogle Scholar
  4. 4.
    R. West, L.D. David, P.I. Djurovich, H. Yu, R. RSinclair, Am. Ceram. Soc. Bull. 62, 899 (1983)Google Scholar
  5. 5.
    Y. Hasegawa, K. Okamura, J. Mater. Sci. 18, 3633 (1983)CrossRefGoogle Scholar
  6. 6.
    T.R. Dietrich, S. Chiussi, M. Marek, A. Roth, F.J. Comes, J. Phys. Chem. 95, 9302 (1991)CrossRefGoogle Scholar
  7. 7.
    P.P. Gaspar, Reactive Intermediates, vol 1 (Wiley, New York, 1978)Google Scholar
  8. 8.
    Y.N. Tang, Reactive Intermediates, vol 2 (Plenum, New York, 1982)Google Scholar
  9. 9.
    F. Anwari, M.S. Gordon, Isr. J. Chem. 23, 129 (1983)CrossRefGoogle Scholar
  10. 10.
    G. Inoue, M. Suzuki, Chem. Phys. Lett. 122, 361 (1985)CrossRefGoogle Scholar
  11. 11.
    J.O. Chu, D.B. Beach, J.M. Jasinski, J. Phys. Chem. 91, 5340 (1987)CrossRefGoogle Scholar
  12. 12.
    T. Masuda, Y. Matsuki, T. Shimoda, Polymer 53, 2973 (2012)CrossRefGoogle Scholar
  13. 13.
    M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556 (1977)CrossRefGoogle Scholar
  14. 14.
    H. Murata, H. Matsuura, K. Ohno, T. Sato, J. Mol. Struc. 52, 1 (1979)CrossRefGoogle Scholar
  15. 15.
    S. Liu, S. Gangopadhyay, G. Sreenivas, S.S. Ang, H.A. Naseem, Phys. Rev. B 55, 13020 (1997)CrossRefGoogle Scholar
  16. 16.
    T. Masuda, Y. Matsuki, T. Shimoda, Thin Solid Films 520, 6603 (2012)CrossRefGoogle Scholar
  17. 17.
    M.L. Huggins, J. Am. Chem. Soc. 75, 4123 (1953)CrossRefGoogle Scholar
  18. 18.
    S. Yajima, Y. Hasegawa, J. Hayashi, M. Iimura, J. Mater. Sci. 13, 2569 (1978)Google Scholar
  19. 19.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  20. 20.
    J. Robertson, E.P. O’Reilly, Phys. Rev. B 35, 2946 (1987)CrossRefGoogle Scholar
  21. 21.
    J.I. Pankove, Semiconductors and Semimetals, “Hydrogeated Amorphous Silicon” Part A (Academic Press, Orlando/London, 1984)Google Scholar
  22. 22.
    H. Wieder, M. Cardona, C.R. Guarnieri, Phys. Stat. Solidi (b) 92, 99 (1979)CrossRefGoogle Scholar
  23. 23.
    Y. Katayama, K. Usami, T. Shimada, Philos. Mag. B 43, 283 (1981)CrossRefGoogle Scholar
  24. 24.
    Y. Catherine, G. Turban, Thin Solid Films 70, 101 (1980)CrossRefGoogle Scholar
  25. 25.
    Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, Y. Hamakawa, J. Appl. Phys. 53, 5273 (1982)CrossRefGoogle Scholar
  26. 26.
    Y.H. Wang, J. Lin, C.H.A. Huan, Mater. Sci. Engineer. B 95, 43 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Chehaidar, R. Carles, A. Zwick, C. Meunier, B. Cros, J. Durand, J. Non-Cryst. Solids 169, 37 (1994)CrossRefGoogle Scholar
  28. 28.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)CrossRefGoogle Scholar
  29. 29.
    D.M. Bhusari, S.T. Kshirsagar, J. Appl. Phys. 73, 1743 (1993)CrossRefGoogle Scholar
  30. 30.
    H. Matsumura, T. Uesugi, H. Ihara, Jpn. J. Appl. Phys. 24, L24 (1985)CrossRefGoogle Scholar
  31. 31.
    T. Masuda, Z. Shen, H. Takagishi, K. Ohdaira, T. Shimoda, Jpn. J. Appl. Phys. 53, 031304 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Sugiyama, T. Shimoda, D.H. Chi, Mol. Phys. 108, 1649 (2010)CrossRefGoogle Scholar
  33. 33.
    G. Fritz, J. Grobe, D. Kummer, Carbosilanes, Vol. Volume 7 (Academic Press, 1965)Google Scholar
  34. 34.
    T. Masuda, A. Iwasaka, H. Takagishi, T. Shimoda, Thin Solid Films 612, 284 (2016)CrossRefGoogle Scholar
  35. 35.
    T. Masuda, A. Iwasaka, H. Takagishi, T. Shimoda, J. Mater. Chem. C 3, 12212 (2015)CrossRefGoogle Scholar
  36. 36.
    T. Friessnegg, M. Boudreau, P. Mascher, A. Knights, S. P. J., and W. Puff. J. Appl. Phys. 84, 786 (1998)CrossRefGoogle Scholar
  37. 37.
    A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, N. Maley, Phys. Rev. B 45, 13367 (1992)CrossRefGoogle Scholar
  38. 38.
    A. Tabata, Y. Kuno, Y. Suzuoki, T. Mizutani, J. Non-Cryst, Solids 164–166. Part 2, 1043 (1993)Google Scholar
  39. 39.
    J. Schäfer, J. Ristein, S. Miyazaki, L. Ley, Appl. Surface Sci. 123, 11 (1998)CrossRefGoogle Scholar
  40. 40.
    N.F. Mott, E.A. Davis, Electronic processes in noncrystalline materials (Oxford University Press, Oxford, 1979)Google Scholar
  41. 41.
    R.S. Sussmann, R. Ogden, Philos. Mag. B 44, 137 (1981)CrossRefGoogle Scholar
  42. 42.
    S. Knief, W. von Niessen, J. Non-Cryst. Solids 255, 242 (1999)CrossRefGoogle Scholar
  43. 43.
    T. Murakami, T. Masuda, S. Inoue, H. Yano, N. Iwamuro, T. Shimoda, AIP Adv. 6, 055021 (2016)CrossRefGoogle Scholar
  44. 44.
    R.J. Loveland, W.E. Spear, A. Al-Sharbaty, J. Non-Cryst. Solids 13, 55 (1973)CrossRefGoogle Scholar
  45. 45.
    I. Sakata, Y. Hayashi, M. Yamanaka, H. Karasawa, J. Appl. Phys. 52, 4334 (1981)CrossRefGoogle Scholar
  46. 46.
    W. Beyer, H. Wagner, H. Mell, MRS Proc. 49, 189 (2011)CrossRefGoogle Scholar
  47. 47.
    A.H. Mahan, P. Raboisson, R. Tsu, Appl. Phys. Lett. 50, 335 (1987)CrossRefGoogle Scholar
  48. 48.
    T. Masuda, N. Sotani, H. Hamada, Y. Matsuki, T. Shimoda, Appl. Phys. Lett. 100, 253908 (2012)CrossRefGoogle Scholar
  49. 49.
    T. Masuda, A. Iwasaka, H. Takagishi, T. Shimoda, G. Soraru, J. Am. Ceram. Soc. 99, 1651 (2016)CrossRefGoogle Scholar
  50. 50.
    N. Tokitoh, W. Ando, Reactive Intermediates Chemistry (Wiley, Hoboken, 2005)Google Scholar
  51. 51.
    F. Demichelis, C.F. Pirri, E. Tresso, J. Appl. Phys. 72, 1327 (1992)CrossRefGoogle Scholar
  52. 52.
    R.A. Street, Phys. Rev. Lett. 49, 1187 (1982)CrossRefGoogle Scholar
  53. 53.
    D. Adler, Phys. Rev. Lett. 41, 1755 (1978)CrossRefGoogle Scholar
  54. 54.
    W.B. Jackson, N.M. Amer, Phys. Rev. B 25, 5559 (1982)CrossRefGoogle Scholar
  55. 55.
    W. Meyer, H. Neldel, Z. Tech. Phys. (Leipzig) 12, 588 (1937)Google Scholar
  56. 56.
    V. Kirbs, T. Drusedau, H. Fiedler, J. Phys. 2, 7473 (1990)Google Scholar
  57. 57.
    R. Widenhorn, A. Rest, E. Bodegom, J. Appl. Phys. 91, 6524 (2002)CrossRefGoogle Scholar
  58. 58.
    N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)CrossRefGoogle Scholar
  59. 59.
    M.J.G. Lee, Phys. Rev. 187, 901 (1969)CrossRefGoogle Scholar
  60. 60.
    Y. Tawada, M. Kondo, H. Okamoto, Y. Hamakawa, Sol. Energy Mater. 6, 299 (1982)CrossRefGoogle Scholar
  61. 61.
    J.D. Carpenter, B.S. Ault, J. Phys. Chem. 95, 3502 (1991)CrossRefGoogle Scholar
  62. 62.
    F.J. Himpsel, T. Fauster, J. Vac. Sci. Technol. A 2, 815 (1984)CrossRefGoogle Scholar
  63. 63.
    M. De Seta, S.L. Wang, F. Fumi, F. Evangelisti, Phys. Rev. B 47, 7041 (1993)CrossRefGoogle Scholar
  64. 64.
    E.A. Schiff, S. Hegedus, X. Deng, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2003)Google Scholar
  65. 65.
    T.M. Brown, C. Bittencourt, M. Sebastiani, F. Evangelisti, Phys. Rev. B 55, 9904 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations