Advertisement

Thin Film Formation by Coating

  • Tatsuya Shimoda
Chapter

Abstract

Here, the coating of silicon solution to form polysilane films and subsequent conversion of the polysilane films to amorphous Si films via pyrolysis are described. Preparing a uniform film of polysilane on a substrate is not straightforward. Although wetting of the silicon solution on a substrate such as glass, quartz, or silicon is adequate, a film once coated on the substrate tends to break during evaporation of the solvent. As a result, only dotted patterns of polysilane remain on the substrate. This phenomenon of film formation is closely related to molecular forces between the substrate and solute in the solution. Therefore, the molecular force itself and its influence on the formation of silicon films are described in 4.2 after general description of coating phenomena in 4.1.

The observed color change of a coated film during the conversion from polysilane to amorphous Si is interesting. The polysilane film is transparent because of its optical bandgap of approximately 6 eV, whereas that of an amorphous Si film is approximately 1.5 eV. Therefore, the bandgap decreases during heating of the film, leading to the absorption of visible light. Strict control of the conversion process from polysilane to amorphous Si is quite important to obtain a semiconductor-grade film with few defects. The amorphous Si film thus obtained can be converted into a polysilicon film via solid-phase growth or laser annealing. This chapter corresponds to the production steps from Si ink (i, p, n) to amorphous Si film via coating and drying and pyrolysis shown in Fig. 2.2.

Keywords

Molecular force van der Waals interaction Hamaker constant Cauchy plot Polydihydrosilane film 

References

  1. 1.
    D. Tabor, R.H.S. Winterton, Proc. R. Soc. A. 312, 435 (1969)CrossRefGoogle Scholar
  2. 2.
    J. Mahanty, B.W. Ninham, Dispersion Forces (Academic Press, New York, 1976)Google Scholar
  3. 3.
    D.B. Hough, L.R. White, Adv. Colloid Interf. Sci. 14, 3 (1980)CrossRefGoogle Scholar
  4. 4.
    V.A. Parsegian, Physical Chemistry: Enriching Topics in Colloid and Surface Science (Theorex, La Jolla, 1975)Google Scholar
  5. 5.
    Handbook of Chemistry and Physics 88th ed. (CRC Press, Boca Raton, 2008)Google Scholar
  6. 6.
    The Aldrich Library of FT-IR Spectra (Sigma–Aldrich Co., 1985)Google Scholar
  7. 7.
    E.M. Lifshitz, Sov. Phys. Jetp. 2, 73 (1956)Google Scholar
  8. 8.
    B.W. Ninham, V.A. Parsegian, G.H. Weiss, J. Stat. Phys. 2, 323 (1970)CrossRefGoogle Scholar
  9. 9.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960)Google Scholar
  10. 10.
    V.A. Parsegian, B.W. Ninham, Nature 224, 1197 (1969)CrossRefGoogle Scholar
  11. 11.
    L. Bergstrom, Adv. Colloid Interf. Sci. 70, 125 (1997)CrossRefGoogle Scholar
  12. 12.
    D.C. Prieve, W.B. Russel, J. Colloid Interface Sci. 125, 1 (1988)CrossRefGoogle Scholar
  13. 13.
    T. Kogai, H. Yatsuda, Y. Shiokawa, inthe 36th EM Symposium (2007), p. 49Google Scholar
  14. 14.
    Y. Sakurai, D. Yoshimura, I.H.Y. Ouchi, H. Tsaka, H. Teramae, N. Matsumoto, S. Hasegawa, N. Ueno, K. Seki, J. Phys. Chem. B 105, 5626 (2001)CrossRefGoogle Scholar
  15. 15.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, New York, 1985)Google Scholar
  16. 16.
    R.H. French, J. Am. Ceram. Soc. 83, 2117 (2000)CrossRefGoogle Scholar
  17. 17.
    T. Masuda, Y. Matsuki, T. Shimoda, J. Colloid Interface Sci. 340, 298 (2009)CrossRefGoogle Scholar
  18. 18.
    T. Masuda, Y. Matsuki, T. Shimoda, Thin Solid Films 520, 5091 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Martin, O. Rossier, A. Buguin, P. Auroy, F. Brochard-Wyart, Eur. Phys. J. E 3, 337 (2000)CrossRefGoogle Scholar
  20. 20.
    T. Masuda, Y. Matsuki, T. Shimoda, Thin Solid Films 520, 6603 (2012)CrossRefGoogle Scholar
  21. 21.
    T. Ishidate, K. Inoue, K. Tsuji, S. Minomura, Solid State Commun. 42, 197 (1982)CrossRefGoogle Scholar
  22. 22.
    D. Beeman, R. Tsu, M.F. Thorpe, Phys. Rev. B 32, 874 (1985)CrossRefGoogle Scholar
  23. 23.
    J. Mullerovs, P. Sutta, G.v. Elzakker, M. Zeman, M. Mikula, Appl. Surf. Sci. 254, 3690 (2008)CrossRefGoogle Scholar
  24. 24.
    E. Bhattacharya, A.H. Mahan, Appl. Phys. Lett. 52, 1587 (1988)CrossRefGoogle Scholar
  25. 25.
    G. Lucovsky, J.C. Yang, S.S. Chao, J.E. Tyler, W. Czubatyj, Phys. Rev. B 28, 3225 (1983)CrossRefGoogle Scholar
  26. 26.
    M. Cardona, Phys. Status Solidi B 118, 463 (1983)CrossRefGoogle Scholar
  27. 27.
    A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, N. Maley, Phys. Rev. B 45, 13367 (1992)CrossRefGoogle Scholar
  28. 28.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  29. 29.
    A. Shah, W. Beyer, Thin-Film Silicon Solar Cells (CRC Press, Boca Raton, 2010)CrossRefGoogle Scholar
  30. 30.
    Y. Ashida, Y. Mishima, M. Hirose, Y. Osaka, K. Kojima, Jpn. J. Appl. Phys. Rev. 23, L129 (1984)CrossRefGoogle Scholar
  31. 31.
    H. Dersch, L. Schweitzer, J. Stuke, Phys. Rev. B 28, 4678 (1983)CrossRefGoogle Scholar
  32. 32.
    W. Beyer, B. Hoheisel, Solid State Commun. 47, 573 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations