Advertisement

Thin-Film Oxide Transistor by Liquid Process (2): UV and Solvothermal Treatments for TFT Fabrication

  • Tatsuya Shimoda
Chapter

Abstract

As previously noted, this chapter describes the effect of UV (ultraviolet) irradiation on the pyrolysis of oxide precursors. In the pyrolysis process of oxide materials, heat is the usual energy source to decompose starting materials to the final products (solids). However, when UV light is used in a pyrolysis process together with heat, a tremendous effect is expected. In this chapter, we present experimental results concerning the UV irradiation under an oxygen atmosphere (UV/O3 treatment) or nitrogen atmosphere to semiconductor (in Sect. 17.1) and insulator (in Sect. 17.3) precursor films. Using this technology, we demonstrated the second example of an all-liquid-processed TFTin Sect. 17.2. The UV irradiation is not only effective for enhancing the properties of oxide films but also can lower the process temperature and be used as a patterning tool. When the UV irradiation technology is used in combination with solvothermal synthesis of solution, which was already described in Chap.  13, it enables the low-temperature solidification of oxide materials at less than 200 °C, as described in Sect. 17.3. In Sect. 17.4, the solidification mechanism of oxide precursor including UV irradiation treatment is fully studied in detail taking an InO cluster gel as a specimen. The cluster gel is an assembly of hybrid clusters, which has In–O cores coordinated with organic ligand molecules. As the structure and composition of cluster gel is clearly understood, this specimen is an ideal material for investigating the mechanism of UV irradiation. It is found that the UV reactions generate new carbon bonds having higher binding energy. The combination of thermal and UV treatments makes possible the growth of fine In–O crystals with reduced (2%) carbon elements. The UV irradiation is not restricted to a tool assisting in the pyrolysis process, but it can be used as a patterning tool of precursor gel films. After confirming the ability of UV light to pattern various materials, we fabricate TFTs only using UV light as a patterning method and demonstrated the operation of the TFT, as described in Sect. 17.5.

Keywords

Oxide thin-film transistors UV/O3 treatment All-liquid-processed TFT Autoclave treatment LaZrO film 

References

  1. 1.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432(488) (2004)CrossRefGoogle Scholar
  2. 2.
    H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 89, 112123 (2006)CrossRefGoogle Scholar
  3. 3.
    K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. Part 1. 45, 4303 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 90, 242114 (2007)CrossRefGoogle Scholar
  5. 5.
    B. Yaglioglu, H.Y. Yeon, R. Beresford, D.C. Paine, Appl. Phys. Lett. 89, 062103 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Arquinha, A. Pimente, A. Marques, L. Pereira, R. Martins, E. Fortunato, J. Non-Cryst. Solids 352, 1749 (2006)CrossRefGoogle Scholar
  7. 7.
    H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, Appl. Phys. Lett. 86, 013503 (2005)CrossRefGoogle Scholar
  8. 8.
    W.B. Jackson, R.L. Hoffman, G.S. Herman, Appl. Phys. Lett. 87, 193503 (2005)CrossRefGoogle Scholar
  9. 9.
    P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Riedl, Adv. Mater. 18, 738 (2006)CrossRefGoogle Scholar
  10. 10.
    R.L. Hoffman, Solid State Electron. 50, 784 (2006)CrossRefGoogle Scholar
  11. 11.
    T. Miyasako, M. Senoo, E. Tokumitsu, Appl. Phys. Lett. 86, 162902 (2005)CrossRefGoogle Scholar
  12. 12.
    M.S. Grover, P.A. Hersh, H.Q. Chiang, E.S. Kettenring, J.F. Wager, D.A. Keszler, J. Phys. D 40, 1335 (2007)CrossRefGoogle Scholar
  13. 13.
    K.J. Saji, M.K. Jayaraj, K. Namura, T. Kamiya, H. Hosono, J. Electrochem. Soc. 155, H390 (2008)CrossRefGoogle Scholar
  14. 14.
    T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010)CrossRefGoogle Scholar
  15. 15.
    D. Kim, C.Y. Koo, K. Song, Y. Jeong, J. Moon, Appl. Phys. Lett. 95, 103501 (2009)CrossRefGoogle Scholar
  16. 16.
    Y.H. Kim, M.K. Han, J.I. Han, S.K. Park, IEEE Trans. Electron Devices 57, 1009 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, T.J. Marks, Adv. Mater. 22, 1346 (2010)CrossRefGoogle Scholar
  18. 18.
    D. Kim, Y. Jeong, C. Y. Koo, K. Song, J. Moon, Jpn. J. Appl. Phys. Part 1. 49, 05EB06 (2010)Google Scholar
  19. 19.
    G.H. Kim, W.H. Jeong, H.J. Ki, Phys. Status Solidi A 207(7), 1677 (2010)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, S.W. Liu, X.W. Sun, J.L. Zhao, G.K.L. Goh, Q.V. Vu, H.Y. Yu, J. Sol-Gel Sci. Technol. 55, 322 (2010)CrossRefGoogle Scholar
  21. 21.
    Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon, J. Kim, M.S. Oh, G.-R. Yi, Y.-Y. Noh, S.K. Park, Nature 489, 128 (2012)CrossRefGoogle Scholar
  22. 22.
    P.K. Nayak, M.N. Hedhili, D. Cha, H.N. Alshareef, Appl. Phys. Lett. 100, 202106 (2012)CrossRefGoogle Scholar
  23. 23.
    K. Umeda, T. Miyasako, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, T. Shimoda, J. Appl. Phys. 113, 1845209 (2013)Google Scholar
  24. 24.
    M.L. Hair, J. Non-Cryst. Solids 19, 299 (1975)CrossRefGoogle Scholar
  25. 25.
    M. Ivanda, S. Music, S. Popovic, M. Gotic, J. Mol. Struct. 480, 645 (1999)CrossRefGoogle Scholar
  26. 26.
    N. Nakayama, Y. Tsuchiya, S. Tamada, K. Kosuge, S. Nagata, K. Takahiro, and S. Yamaguch, Jpn. J. Appl. Phys. Part 2 32, L1465 (1993)CrossRefGoogle Scholar
  27. 27.
    R.O. Dillon, J.A. Woollam, V. Katkanant, Phys. Rev. B 29, 3482 (1984)CrossRefGoogle Scholar
  28. 28.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  29. 29.
    K. Nomura, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, 192107 (2008)CrossRefGoogle Scholar
  30. 30.
    J.S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Thin Solid Films 520, 1679 (2012)CrossRefGoogle Scholar
  31. 31.
    J.-Y. Kwon, D.-J. Lee, K.-B. Kim, Electron. Mater. Lett. 7, 1 (2011)CrossRefGoogle Scholar
  32. 32.
    E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Livage, In Sol–Gel Optics Processing and Applications, Ed. L. C. Klein (Kluwer Academic, Dordrecht, 1994), p. 39Google Scholar
  34. 34.
    T. Miyasako, B.N.Q. Trinh, M. Onoue, T. Kaneda, P.T. Tue, E. Tokumitsu, T. Shimoda, Appl. Phys. Lett. 97, 173509 (2010)CrossRefGoogle Scholar
  35. 35.
    T. Miyasako, B.N.Q. Trinh, M. Onoue, T. Kaneda, P.T. Tue, E. Tokumitsu, T. Shimoda, Jpn. J. Appl. Phys. 50, 04DD09 (2011)CrossRefGoogle Scholar
  36. 36.
    T. Miyasako, M. Onoue, E. Tokumitsu, T. Shimoda, MRS Fall Meet. (2011), S2.8Google Scholar
  37. 37.
    K. Umeda, T. Miyasakol, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, T. Shimoda, Jpn. J. Appl. Phys. 53, 02BE03 (2014)CrossRefGoogle Scholar
  38. 38.
    H. Kasper, Z. Anorg, Allg. Chem. 349, 113 (1967)CrossRefGoogle Scholar
  39. 39.
    N. Kimizuka, T. Mohri, J. Solid State Chem. 60, 382 (1985)CrossRefGoogle Scholar
  40. 40.
    M. Nakamura, N. Kimizuka, T. Mohri, J. Solid State Chem. 93, 298 (1991)CrossRefGoogle Scholar
  41. 41.
    M. Orita, M. Takeuchi, H. Sakai, H. Tanji, Jpn. J. Appl. Phys. 34, L1550 (1995)CrossRefGoogle Scholar
  42. 42.
    M. Orita, H. Sakai, M. Takeuchi, Y. Yamaguchi, Trans. Mater. Res. Soc. Jpn. 20, 573 (1996)Google Scholar
  43. 43.
    T. Moriga, D.D. Edwards, T.O. Mason, G.B. Palmer, K.R. Poeppelmeier, J.L. Schindler, C.R. Kannewurf, I. Nakabayashi, J. Am. Ceram. Soc. 81, 1310 (1998)CrossRefGoogle Scholar
  44. 44.
    T. Moriga, D.R. Kammler, T.O. Mason, G.B. Palmer, K.R. Poeppelmeier, J. Am. Ceram. Soc. 82, 2705 (1999)CrossRefGoogle Scholar
  45. 45.
    T. Kaneda et al., Rheology printing for metal-oxide patterns and devices. J. Mater. Chem. C 2, 40–49 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Murakami, J. Li, D. Hirose, S. Kohara, T. Shimoda, Solution processing of highly conductive ruthenium and ruthenium oxide thin films from ruthenium-amine complexes. J. Mater. Chem. C 3, 4490–4499 (2015)CrossRefGoogle Scholar
  47. 47.
    P. Tue et al., High-performance solution-processed ZrInZnO thin-film transistors. IEEE Trans. Electron Devices 60, 320–326 (2013)CrossRefGoogle Scholar
  48. 48.
    P. Tue, J. Li, T. Miyasako, S. Inoue, T. Shimoda, Low-temperature all-solution-derived amorphous oxide thin-film transistors. IEEE Electron Device Lett. 34, 1536–1538 (2013)CrossRefGoogle Scholar
  49. 49.
    M. Puchberger et al., Can the clusters Zr6O4(OH)4(OOCR)12 and [Zr6O4(OH)4(OOCR)12]2 be converted into each other? Eur. J. Inorg. Chem., 3283–3293 (2006)CrossRefGoogle Scholar
  50. 50.
    R. Mos et al., Synthesis, crystal structure and thermal decomposition of Zr6O4(OH)4(CH3CH2COO)12. J. Anal. Appl. Pyrolysis 97, 137–142 (2012)CrossRefGoogle Scholar
  51. 51.
    J. Li et al., Hybrid cluster precursors of the LaZrO insulator for transistors: properties of high-temperature-processed films and structures of solutions, gels, and solids. Sci. Rep. 6, 29682 (2016).  https://doi.org/10.1038/srep29682 CrossRefGoogle Scholar
  52. 52.
    D.J. Jacob, Introduction to Atmospheric Chemistry (Princeton University Press, Princeton, 1999), pp. 162–169Google Scholar
  53. 53.
    H.-J. Deiseroth, H.K. Müller-Buschbaum, Ein Beitrag zur Pyrochlorstruktur an La2Zr2O7. Z. Anorg. Allg. Chem. 375, 152–156 (1970)CrossRefGoogle Scholar
  54. 54.
    C. Loogn, J. Richardson, M. Ozawa, M. Kimura, Crystal structure and short-range oxygen defects in La-modified and Ndmodified ZrO2. J. Alloys Compd. 207, 174–177 (1994)Google Scholar
  55. 55.
    Y.M. Park, J. Daniel, M. Heeney, A. Salleo, Room-temperature fabrication of ultrathin oxide gate dielectrics for low-voltage operation of organic field-effect transistors. Adv. Mater. 23, 971–974 (2011)CrossRefGoogle Scholar
  56. 56.
    Y.M. Park, A. Desai, A. Salleo, Solution-processable zirconium oxide gate dielectrics for flexible organic field effect transistors operated at low voltages. Chem. Mater. 25, 2571–2579 (2013)CrossRefGoogle Scholar
  57. 57.
    W.-T. Park et al., Facile routes to improve performance of solution-processed amorphous metal oxide thin film transistors by water vapor annealing. ACS Appl. Mater. Interfaces 7, 3289–13294 (2015)CrossRefGoogle Scholar
  58. 58.
    D. Hirose, T. Shimoda, Evaluating the State of Indium-Tin Oxide gels via estimation of their cohesive energy. Jpn. J. Appl. Phys. 53, 02BC01-1-02BC01-7 (2014)CrossRefGoogle Scholar
  59. 59.
    S. Inoue, T.T. Phan, T. Hori, H. Koyama, T. Shimoda, Electrophoretic displays driven by all-oxide thin-film transistor backplanes fabricated using a solution process. Phys. Status Solidi A 212, 2133–2140 (2015)CrossRefGoogle Scholar
  60. 60.
    T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitu, T. Shimoda, Rheology printing for metal-oxide patterns and devices. J. Mater. Chem. C 2, 40–49 (2014)CrossRefGoogle Scholar
  61. 61.
    K. Umeda, T. Miyasako, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, T. Shimoda, Impact of UV/O3 treatment on solution-processed amorphous InGaZnO4 thin film transistors. J. Appl. Phys. 113(184509), 1–6 (2013)Google Scholar
  62. 62.
    Y. Yoshimoto, J. Li, T. Shimoda, Fabrication of total solution-processed all-oxide TFT by UV irradiation-redissolving patterning. Asia-Pacific Conference of Transducers and Micro-Nano Technology 2016, Ishikawa, Japan, 5a-2 (2016)Google Scholar
  63. 63.
    Y. Yoshimoto, J. Li, and T. Shimoda, Solid conversion behaviors of indium oxide gel consisting of hybrid clusters with thermal- and/or ultraviolet-treatments for low temperature processing, Ceramics International (2018), Ceramics International 44(7), May 2018 doi.org/10.1016/j.ceramint.2018.01.120CrossRefGoogle Scholar
  64. 64.
    New Energy and Industrial Technology Development Organization (NEDO), Research for putting characteristic functional liquid materials into practical use, https://app5.infoc.nedo.go.jp/disclosure/SearchResultDetail. Accessed 3 December 2017. NEDO Annual Report, P14004 (2017)
  65. 65.
    T. Proffen, S.J.L. Billinge, T. Egami, D. Louca, Structural analysis of complex materials using the atomic pair distribution function — A practical guide. Z. Krist. 218, 132–143 (2003)Google Scholar
  66. 66.
    P. Zhu, J. Li, P.T. Tue, S. Inoue and T. Shimoda, Hybrid cluster precursors of the LaZrO insulator for transistors: lowering the processing temperature, Scientific Reports, (2018) 8:5934 | DOI:10.1038/s41598-018-24292-4Google Scholar
  67. 67.
    L.V. Morozova, P.A. Tikhonov, V.B. Glushkova, Physicochemical investigation of the In2O3-HfO2 system in the indium oxide-rich region. Inorg. Mater. 27, 217–220 (1991)Google Scholar
  68. 68.
    M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B. 107, 659–663 (2003)CrossRefGoogle Scholar
  69. 69.
    K. Umeda, T. Miyasako, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, T. Shimoda, J. Appl. Phys. 113, 184509, 1–6 (2013)Google Scholar
  70. 70.
    Y. Yoshimoto, J. Li, T. Shimoda, Presented at APCOT2016, Asia-Pacific Conference of Transducers and Micro-Nano Technology 2016, Ishikawa, Japan, 5a-2 (2016)Google Scholar
  71. 71.
    Y. Yoshimoto, J. Li, and T. Shimoda, Presented at EM-NANO2017, 6th Int. Symp. on Organic and Inorganic Electronic Materials and Related Nanotechnologies, Fukui, Japan, PO1–25 (2017)Google Scholar
  72. 72.
    Y. Yoshimoto, J. Li, and T. Shimoda, Development of a direct patterning method for functional oxide thin films using ultraviolet irradiation and hybrid-cluster gels and its application to thin-film transistor fabrication, Applied Physics Express, Volume 11, Number 4, pp. 046501 (2018), DOI: 10.7567/APEX. 11.046501Google Scholar
  73. 73.
    L. Li, P. Zhu, D. Hirose, S. Kohara, T. Shimoda, Sci. Rep. 6, 29682 (2016)CrossRefGoogle Scholar
  74. 74.
    K. Nagahara, D. Hirose, J. Li, J. Mihara, T. Shimoda, Ceram. Int. 42, 7730 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations