Novel Materials Proper to Liquid Process

  • Tatsuya Shimoda


In this chapter, novel oxide materials, which are special for liquid processes, are introduced. In the liquid process, a final solid oxide is formed by the decomposition of a metal–organic compound and by the subsequent growth of metal oxide, which proceed simultaneously in a pyrolysis reaction. Because of their nature, the organic elements remain until a certain stage during the conversion process from liquid to solid. Carbon atoms thus remaining in the system strongly affect the properties of the solid oxide formed and also affect the gel-to-solid conversion. The complete elimination of carbon from the system generally requires a temperature greater than 1000 °C. Accordingly, carbon should remain in the system when annealing is conducted at 500 °C or 600 °C. In most cases, the remaining carbon tends to degrade the properties of the formed solid. In the case of an ITO film, for example, the resistivity of an ITO film prepared by the vacuum process is typically 1 × 10−4 Ωcm, whereas it increases to 1 × 10−3 Ωcm in the case of a film prepared using the liquid process. This degradation is regrettably common in liquid-processed oxide materials and has been a large drawback of the liquid process compared to the vacuum process.

However, exceptions always exist. That is also true in oxide materials prepared by the liquid process. In some cases, the liquid process gives thin films superior to those prepared by the vacuum process. One example is described in Sects.  12.1 and  12.2, “Low-temperature formation of perovskite PZT.” By controlling the decomposition of carbon, we demonstrated the direct formation of perovskite PZT bulk and films at low temperatures, which has not been accomplished by the vacuum process. Moreover, the effect of carbon decomposition on materials led to novel materials. One example is introduced in Sects. 15.1 and 15.2. A material with a high relative dielectric constant εr was obtained by the liquid process. The material is BiNbO, which has a pyrochlore crystal structure as a main phase and has never been previously reported in this ternary system.

Because oxide materials prepared by the liquid process always contain some amount of carbon, they can reasonably be called metal-oxide carbides. Therefore, they are essentially a novel substance from a compositional viewpoint. Sometimes novel materials are created because of remaining carbon. The example is introduced in Sect. 15.3, where p-type semiconductors were created, most likely by the effects of remaining carbon.


Solution-processed BiNbO Pyrochlore crystal structure High relative dielectric constant P-type oxide semiconductors Amorphous La-Ru-O 


  1. 1.
    M.A. Subramanian, J.C. Calabrese, Mater. Res. Bull. 28, 523 (1993)CrossRefGoogle Scholar
  2. 2.
    E.T. Keve, A.C. Skapski, J. Solid State Chem. 8, 159 (1973)CrossRefGoogle Scholar
  3. 3.
    Y. Maruyama, C. Izawa, T. Watanabe, ISRN Mater. Sci. 2012, 170362 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Zhou, H. Wang, X. Yao, X. Wei, F. Xiang, L. Pang, Appl. Phys.Lett. 90, 172910 (2007)CrossRefGoogle Scholar
  5. 5.
    C. Yang, J. Mater. Sci. Lett. 18, 805 (1999)CrossRefGoogle Scholar
  6. 6.
    E.S. Kim, W. Choi, J. Eur. Ceram. Soc. 26, 1761 (2006)CrossRefGoogle Scholar
  7. 7.
    H. Lim, Y.-J. Oh, Jpn. J. Appl. Phys. 45, 5865 (2006)CrossRefGoogle Scholar
  8. 8.
    C.-M. Cheng, S.-H. Lo, C.-F. Yang, Ceram. Int. 26, 113 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Tahara, A. Shimada, N. Kumada, Y. Sugahara, J. Solid State Chem. 180, 2517 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Takenaka, K. Komura, K. Sakata, Jpn. J. Appl. Phys. 35, 5080 (1996)CrossRefGoogle Scholar
  11. 11.
    K.-H. Cho, C.-H. Choi, K.P. Hong, J.-Y. Choi, Y.H. Jeong, S. Nahm, C.-Y. Kang, S.-J. Yoon, H.-J. Lee, IEEE Electron Device Lett. 29, 684 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Zhou, H. Wang, X. Yao, J. Am. Ceram. Soc. 90, 327 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Valant, D. Suvorov, J. Am. Ceram. Soc. 86, 939 (2003)CrossRefGoogle Scholar
  14. 14.
    H. Du, X. Yao, J. Mater. Sci. 42, 979 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Du, X. Yao, H. Wang, Appl. Phys. Lett. 88, 212901 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Hu, C.-L. Huang, Ceram. Int. 30, 2241 (2004)CrossRefGoogle Scholar
  17. 17.
    S. Kamba, V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, J. Nino, S. Trolier-McKinstry, M.T. Lanagan, C.A. Randall, Phys. Rev. B 66, 054106 (2002)CrossRefGoogle Scholar
  18. 18.
    M. Nakajima, R. Ikariyama, P.S.S.R. Krishnan, T. Yamada, H. Funakubo, Appl. Phys. Lett. 104, 022908 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Valant, P.K. Davies, J. Am. Ceram. Soc. 83, 147 (2000)CrossRefGoogle Scholar
  20. 20.
    Q. Wang, H. Wang, X. Yao, J. Appl. Phys. 101, 104116 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Onoue, T. Miyasako, E. Tokumitsu, T. Shimoda, IEICE Electron. Express 11, 20140651 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Inoue, T. Ariga, S. Matsumoto, M. Onoue, T. Miyasako, E. Tokumitsu, N. Chinone, Y. Cho, T. Shimoda, J. Appl. Phys. 116, 154103 (2014)CrossRefGoogle Scholar
  23. 23.
    U. Pirnat, M. Valant, B. Jancar, D. Suvorov, Chem. Mater. 17, 5155 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Valant, B. Jancar, U. Pirnat, D. Suvorov, J. Eur. Ceram. Soc. 25, 2829 (2005)CrossRefGoogle Scholar
  25. 25.
    J. Lu, D.O. Klenov, S. Stemmer, Appl. Phys. Lett. 84, 957 (2004)CrossRefGoogle Scholar
  26. 26.
    H. Kagata, T. Inoue, J. Kato, I. Kameyama, Jpn. J. Appl. Phys., Part 1(31), 3152 (1992)CrossRefGoogle Scholar
  27. 27.
    S. Butee, A.J. Kulkarni, O. Prakash, R.P.R.C. Aiyar, K. Sudheendran, K.C.J. Raju, J. Alloys Compd. 492, 351 (2010)CrossRefGoogle Scholar
  28. 28.
    N. Wang, M.Y. Zhao, W. Li, Z.W. Yin, Ceram. Int. 30, 1017 (2004)CrossRefGoogle Scholar
  29. 29.
    M.H. Weng, C.L. Huang, J. Mater. Sci. Lett. 19, 375 (2000)CrossRefGoogle Scholar
  30. 30.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)CrossRefGoogle Scholar
  31. 31.
    T. Ariga, S. Inoue, S. Matsumoto, M. Onoue, T. Miyasako, E. Tokumitsu, T. Shimoda, Jpn. J. Appl. Phys. 54, 091501 (2015)CrossRefGoogle Scholar
  32. 32.
    G. Zhang, J. Yang, S. Zhang, Q. Xiong, B. Huang, J. Wang, W. Gong, J. Hazard. Mater. 172, 986 (2009)CrossRefGoogle Scholar
  33. 33.
    R.L. Thayer, C.A. Randall, S. Trolier-McKinstry, J. Appl. Phys. 94, 1941 (2003)CrossRefGoogle Scholar
  34. 34.
    W. Ren, S. Trolier-McKinstry, C.A. Randall, T.R. Shrout, J. Appl. Phys. 89, 767 (2001)CrossRefGoogle Scholar
  35. 35.
    N. Wang, M.-Y. Zhao, Z.-W. Yin, W. Li, Mater. Lett. 57, 4009 (2003)CrossRefGoogle Scholar
  36. 36.
    C. Avis, J. Jang, J. Mater. Chem. 21, 10649 (2011)CrossRefGoogle Scholar
  37. 37.
    K. Jiang, J.T. Anderson, K. Hoshino, D. Li, J.F. Wager, D.A. Keszler, Chem. Mater. 23, 945 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, T.J. Marks, Adv. Mater. 22, 1346 (2010)CrossRefGoogle Scholar
  39. 39.
    K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10, 45 (2011)CrossRefGoogle Scholar
  40. 40.
    M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011)CrossRefGoogle Scholar
  41. 41.
    M.-G. Kim, H.S. Kim, Y.-G. Ha, J. He, M.G. Kanatzidis, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 132, 10352 (2010)CrossRefGoogle Scholar
  42. 42.
    Z.L. Mensinger, J.T. Gatlin, S.T. Meyers, L.N. Zakharov, D.A. Keszler, D.W. Johnson, Angew. Chem. Int. Ed. 47, 9484 (2008)CrossRefGoogle Scholar
  43. 43.
    S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, H. Hosono, Adv. Mater. 15, 1409 (2003)CrossRefGoogle Scholar
  44. 44.
    T. Kamiya, S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, H. Hosono, Adv. Funct. Mater. 15, 968 (2005)CrossRefGoogle Scholar
  45. 45.
    S.H. Kim, J.A. Cianfrone, P. Sadik, K.-W. Kim, M. Ivill, D.P. Norton, Appl. Phys. Lett. 107, 103538 (2010)Google Scholar
  46. 46.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)CrossRefGoogle Scholar
  47. 47.
    K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, H. Hosono, Nature 419, 462 (2002)CrossRefGoogle Scholar
  48. 48.
    S. Matsuishi, Y. Toda, M.M.K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, H. Hosono, Science 301, 626 (2003)CrossRefGoogle Scholar
  49. 49.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003)CrossRefGoogle Scholar
  50. 50.
    H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939–942 (1997)CrossRefGoogle Scholar
  51. 51.
    H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, MRS Bull. 25, 28 (2000)CrossRefGoogle Scholar
  52. 52.
    Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano, H. Hosono, Phys. Status Solidi A 206, 2187 (2009)CrossRefGoogle Scholar
  53. 53.
    H. Mizoguchi, M. Hirano, S. Fujitsu, T. Takeuchi, K. Ueda, H. Hosono, Appl. Phys. Lett. 80, 1207 (2002)CrossRefGoogle Scholar
  54. 54.
    J. Li, T. Kaneda, E. Tokumitsu, M. Koyano, T. Mitani, T. Shimoda, Appl. Phys. Lett. 101, 052102 (2012)CrossRefGoogle Scholar
  55. 55.
    J. Li, E. Tokumitsu, M. Koyano, T. Mitani, T. Shimoda, Appl. Phys. Lett. 101, 132104 (2012)CrossRefGoogle Scholar
  56. 56.
    P. Khalifah, K.D. Nelson, R. Jin, Z.Q. Mao, Y. Liu, Q. Huang, X.P.A. Gao, A.P. Ramirez, R.J. Cava, Nature 411, 669 (2001)CrossRefGoogle Scholar
  57. 57.
    M. Dekkers, G. Rijnders, D.H.A. Blank, Appl. Phys. Lett. 90, 021903 (2007)CrossRefGoogle Scholar
  58. 58.
    Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, F. Lichtenberg, Nature 372, 532 (1994)CrossRefGoogle Scholar
  59. 59.
    P. Khalifah, R. Osborn, Q. Huang, H.W. Zandbergen, R. Jin, Y. Liu, D. Mandrus, R.J. Cava, Science 297, 2237 (2002)CrossRefGoogle Scholar
  60. 60.
    H. Hosono, T. Kamiya, Ceramics 38, 825 (2003)Google Scholar
  61. 61.
    J. Park, K.H. Kim, H.-J. Noh, S.-J. Oh, J.-H. Park, H.-J. Lin, C.-T. Chen, Phys. Rev. B 69, 165120 (2004)CrossRefGoogle Scholar
  62. 62.
    P.A. Cox, J.B. Goodenough, P.J. Tavener, D. Telles, R.G. Egdell, J. Solid State Chem. 62, 360 (1986)CrossRefGoogle Scholar
  63. 63.
    M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, A.E. Gunnæs, J. Electron Spectrosc. Relat. Phenom. 184, 399 (2011)CrossRefGoogle Scholar
  64. 64.
    P. Khalifah, R.J. Cava, Phys. Rev. B 64, 085111 (2001)CrossRefGoogle Scholar
  65. 65.
    R.J. Cava, Dalton Trans. 36, 2979 (2004)CrossRefGoogle Scholar
  66. 66.
    J.S. Lee, S.J. Moon, T.W. Noh, T. Takeda, R. Kanno, S. Yoshii, M. Sato, Phys. Rev. B 72, 035124 (2005)CrossRefGoogle Scholar
  67. 67.
    S.J. Moon, H. Jin, K.W. Kim, W.S. Choi, Y.S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, T.W. Noh, Phys. Rev. Lett. 101, 226402 (2008)CrossRefGoogle Scholar
  68. 68.
    M. Tachibana, Y. Kohama, T. Shimoyama, A. Harada, T. Taniyama, M. Itoh, H. Kawaji, T. Atake, Phys. Rev. B 73, 193107 (2006)CrossRefGoogle Scholar
  69. 69.
    T. Fujita, K. Tsuchida, Y. Yasui, Y. Kobayashi, M. Sato, Phys. B 329–333, 743 (2003)CrossRefGoogle Scholar
  70. 70.
    H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, M. Kikuchi, H. Yanagi, T. Kamiya, H. Hosono, Appl. Phys. Lett. 91, 012104 (2007)CrossRefGoogle Scholar
  71. 71.
    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287–337 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations