Direct Imprinting of Gel (Nano-rheology Printing)

  • Tatsuya Shimoda


Here, a new printing method is proposed: direct printing of metal-oxide patterns with well-defined shapes. This printing utilizes a viscoelastic transformation of precursor gels when imprinted; they soften at a certain temperature during thermal imprinting so that the gels can be rheologically imprinted. The imprinted patterns exhibit very little shrinkage after post-annealing, thereby achieving high shape fidelity to the mold together with metal-oxide condensation at imprinting. The viscoelastic transformation and metal-oxide condensation at imprinting constitute the basis of this printing method, which is closely related to the cluster structure of the precursor gel. This method has worked for patterns with dimensions as small as several tens of nanometers. Because this method utilizes the rheological property of an oxide precursor gel and is good at nano-sized patterning, we named it “nano-rheology printing” (n-RP).

In Sect. 14.1, the features of the n-RP process are introduced, with indium tin oxide, InSnO (ITO), taken as an example. The relationship between the n-RP parameters and the structure of the ITO precursor gel are clarified through multiple analyses. We stress that the ITO precursor gel remains a physical gel consisting of nanoclusters that do not chemically bind to each other. To confirm this fact, a unique analytical method, which can identify the ITO gel as a physical one, is introduced in Sect. 14.2. In Sects. 14.3 and 14.4, n-RP methods using a ZrO gel and an RuLaO gel are described. With respect to device fabrication using the n-RP method, TFTs with a short-channel length and active-matrix devices for displays are reported in Chap.  19.


Direct printing of metal-oxide patterns Nano-rheology printing Indium tin oxide (ITO) Physical gel Viscoelastic properties of gels 


  1. 1.
    T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitsu, T. Shimoda, J. Mater.Chem. C2, 40–49 (2014)Google Scholar
  2. 2.
    M. Li, H. Tan, L. Chen, J. Wang, S.Y. Chou, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 21, 660 (2003)CrossRefGoogle Scholar
  3. 3.
    K.-J. Byeonand, H. Lee, Eur. Phys. J. Appl. Phys. 59, 10001 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Isshikia, Y. Ohishi, S. Goto, K. Takeshita, T. Ishikawa, Nucl. Instrum. Methods Phys. Res., Sect. A 663, 467 (2001)Google Scholar
  5. 5.
    S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, M. Takata, J. Phys. Condens. Matter 19, 506101 (2007)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    O.F. G¨obel, M. Nedelcu, U. Steiner, Adv. Funct. Mater. 17, 1131 (2007)CrossRefGoogle Scholar
  8. 8.
    R. Ganesan, J. Dumond, M.S.M. Saifullah, S.H. Lim, H. Hussain, H.Y. Low, ACS Nano 6, 1494 (2012)CrossRefGoogle Scholar
  9. 9.
    S.H. Lim, M.S.M. Saifullah, H. Hussain, W.W. Loh, H.Y. Low, Nanotechnology 21, 285303 (2010)CrossRefGoogle Scholar
  10. 10.
    K.-M. Yoon, K.-Y. Yang, H. Lee, Thin Solid Films 518, 126 (2009)CrossRefGoogle Scholar
  11. 11.
    R.W. Schwartz, T. Schneller, R. Waser, C. R. Chim. 7, 433 (2004)CrossRefGoogle Scholar
  12. 12.
    L. Fei, M. Naeemi, G. Zou, H. Luo, Chem. Rec. 13, 85 (2013)CrossRefGoogle Scholar
  13. 13.
    T.P. Niesen, M.R. De Guire, J. Electroceram. 6, 169 (2001)CrossRefGoogle Scholar
  14. 14.
    D. Hirose, T. Shimoda, Jpn. J. Appl. Phys. 53, 02BC01-1–02BC01-7 (2014)CrossRefGoogle Scholar
  15. 15.
    D.B. Hough, L.R. White, Adv. Colloid Interf. Sci. 14, 3 (1980)CrossRefGoogle Scholar
  16. 16.
    C.J. Van Oss, R.J. Good, M.K. Chaudhury, Langmuir 4, 884 (1988)CrossRefGoogle Scholar
  17. 17.
    D. Gallagher, F. Scanlan, R. Houriet, H.J. Mathieu, T.A. Ring, J. Mater. Res. 8, 3135 (1993)CrossRefGoogle Scholar
  18. 18.
    A.L. Cauchy, Bull. Sci. Math. 14, 6 (1830)Google Scholar
  19. 19.
    J. Labeguerie, P. Gredin, J. Marrot, A. de Kozak, J. Solid State Chem. 178, 3197 (2005)CrossRefGoogle Scholar
  20. 20.
    J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic, London, 1992), p. 202Google Scholar
  21. 21.
    V.A. Parsegian, B.W. Ninham, Nature 224, 1197 (1969)CrossRefGoogle Scholar
  22. 22.
    L. Bergström, Adv. Colloid Interf. Sci. 70, 125 (1997)CrossRefGoogle Scholar
  23. 23.
    T. Masuda, Y. Matsuki, T. Shimoda, J. Colloid Interface Sci. 340, 298 (2009)CrossRefGoogle Scholar
  24. 24.
    Z. Li, R.F. Giese, C.J. van Oss, J. Yvon, J. Cases, J. Colloid Interface Sci. 156, 279 (1993)CrossRefGoogle Scholar
  25. 25.
    C. Della Volpe, D. Maniglio, M. Brugnara, S. Siboni, M. Morra, J. Colloid Interface Sci. 271, 434 (2004)CrossRefGoogle Scholar
  26. 26.
    D. Hirose, J. Li, Y. Murakami, S. Kohara and T. Shimoda, Origin of the thermal plasticity property of zirconium oxide gels for use in direct thermal nanoimprinting. Ceram. Int. 44(15). CrossRefGoogle Scholar
  27. 27.
    A.K. Jonsson, G.A. Niklasson, M. Veszelei, Electrical properties of ZrO2 thin films. Thin Solid Films 402, 242–247 (2002)CrossRefGoogle Scholar
  28. 28.
    A. Javey et al., High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241–246 (2002)CrossRefGoogle Scholar
  29. 29.
    J.H. Park et al., Boron-doped Peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl. Mater. Interfaces 5, 410–417 (2013)CrossRefGoogle Scholar
  30. 30.
    Y.M. Park, A. Desai, A. Salleo, L. Jimison, Solution-Processable zirconium oxide gate dielectrics for flexible organic field effect transistors operated at low voltages. Chem. Mater. 25, 2571–2579 (2013)CrossRefGoogle Scholar
  31. 31.
    J.H. Park et al., Boron-doped Peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl. Mater. Interfaces 5, 8067–8075 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Xifeng, X. Enlong, Z. Jianhua, Low-temperature solution-processed zirconium oxide gate insulators for thin-film transistors. IEEE Trans. Electron Devices 60, 3413–3416 (2013)CrossRefGoogle Scholar
  33. 33.
    Zirkl, B. M. et al. Low-voltage organic thin-film transistors with high- k nanocomposite gate dielectrics for flexible electronics and Optothermal sensors. 2241–2245 (2007)Google Scholar
  34. 34.
    T. Kaneda et al., Rheology printing for metal-oxide patterns and devices. J. Mater. Chem. C2, 40 (2014)Google Scholar
  35. 35.
    P. Khalifah, R. Osborn, Q. Huang, H.W. Zandbergen, R. Jin, Y. Liu, D. Mandrus, R.J. Cava, Orbital Ordering Transition in La4Ru2O10. Science 297, 2237–2240 (2002)CrossRefGoogle Scholar
  36. 36.
    J. Li, T. Kaneda, E. Tokumitsu, M. Koyano, T. Mitani, T. Shimoda, P-type conductive amorphous oxides of transition metals from solution processing. Appl. Phys. Lett. 101, 052102-1–052102-5 (2012)Google Scholar
  37. 37.
    K. Nagahara, D. Hirose, J. Li, J. Mihara, T. Shimoda, Ceram. Int. 42(6), 7730 (2016)CrossRefGoogle Scholar
  38. 38.
    T. Proffen, S.J.L. Billinge, T. Egami, D. Louca, Structural analysis of complex materials using the atomic pair distribution function — A practical guide. Z. Krist. 218, 132–143 (2003)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations