Improvement of Solid Through Improved Solutions and Gels (1): Utilization of Reduction Agent and Reduced Atmosphere

  • Tatsuya Shimoda


In Sect. 12.1, a novel low-temperature crystallization path for perovskite lead zirconate titanate (PZT) from solution is reported. The modification of a PZT solution with monoethanolamine (MEA) resulted in a change in the crystallization behavior. MEA was strongly coordinated to the metal ions, resulting in reduction of Pb2+ into Pb0 because of a reducing environment at 200–300 °C. Nanoscopic separations of Pb0 were later transformed into uniformly distributed PbO nanocrystals and clusters in the amorphous Zr/Ti–O matrix and finally crystallized into perovskite at 400–500 °C. On the other hand, pyrochlore phase appeared in the conventional crystallization process. The avoidance of pyrochlore formation is a key for the low-temperature crystallization of perovskite. X-ray absorption fine structure (XAFS) analysis was performed to reveal the structures in solutions and amorphous phases.

In Sect. 12.2, a new reaction path for the low-temperature crystallization of device-quality PZT films was described. The essential aspect of this path is to circumvent pyrochlore formation at approximately 300 °C as the temperature is increased to 400 °C. In this approach, MEA was not used. Pb2+ was reduced to Pb0 by maintaining the presence of sufficient carbon via pyrolysis at 210 °C, which is well below the temperature for pyrochlore formation. This process led to insufficient Pb2+ in the film to form pyrochlore. The films were successfully crystallized onto metals and metal/oxide hybrids at 400–450 °C.

In Sect. 12.3, the same method as in Sect. 12.1 was used to form highly conductive ruthenium metal (Ru0) and ruthenium oxide (RuO2) films. Those solutions were prepared from ruthenium(III) nitrosyl acetate and amines. Ru0 and RuO2 thin films were formed when annealed under an inert atmosphere (nitrogen or vacuum) and under an oxygen atmosphere, respectively. The effects of different amine structures were compared, and alkanolamine and amino acids were found to produce Ru0 films of higher quality than films formed by alkyl amines. These results were correlated with the structures of ruthenium complexes. The resistivity values of Ru0 and RuO2 thin films prepared from ruthenium–alkanolamine complexes were 2.1 × 10−5 and 4.3 × 10−4 Ω cm, respectively, similar to those of vacuum-processed Ru0 and RuO2 ones. The Ru0 film showed high stability against oxidation during further annealing in oxygen, even at nanometer thickness (e.g., 25 nm).

In Sect. 12.4, highly conductive RuO2 thin films were prepared by a low-temperature solution process combined with green laser annealing (GLA). This process enabled the production of RuO2 films at a relatively low temperature of 250 °C. GLA led to effective sintering of the film, significantly improving its crystallinity and density, resulting in grain joining; consequently, the conductivity was dramatically increased by one order of magnitude or more. The RuO2 thin films exhibited a low resistivity (e.g., 7.6 × 10−5 Ωcm for a 40-nm-thick film), which was approximately only two times greater than that of single-crystalline RuO2. Such resistivity has not previously been achieved if thermal annealing soley used even at a temperature of 800 °C and is similar to or lower than that of vacuum-deposited RuO2 films.


Lead zirconate titanate (PZT) X-ray absorption fine structure (XAFS) analysis Low-temperature crystallization of PZT Ruthenium metal (Ru0) film Ruthenium oxide (RuO2) film 


  1. 1.
    H. Kameda, J. Li, D.H. Chi, A. Sugiyama, K. Higasimine, T. Uruga, H. Tanida, K. Kato, T. Kaneda, T. Miyasako, E. Tokumitsu, T. Mitani, T. Shimoda, Crystallization of lead zirconate titanate without passing through pyrochlore by new solution process. J. Eur. Ceram. Soc. 32, 1667–1680 (2012)CrossRefGoogle Scholar
  2. 2.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, et al., Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006)CrossRefGoogle Scholar
  3. 3.
    N. Izyumskaya, Y.I. Alivov, S.J. Cho, H. Morkoc¸, H. Lee, Y.S. Kang, Processing, structure, properties, and application of PZT thin films. Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007)CrossRefGoogle Scholar
  4. 4.
    R.W. Schwartz, T. Schneller, R. Waser, Chemical solution deposition of electronic oxide films. C. R. Chim. 7, 433–461 (2004)CrossRefGoogle Scholar
  5. 5.
    Y. Faheem, M. Shoaib, Sol–gel procession and characterization of phase-pure lead zirconate titanate nano-powders. J. Am. Ceram. Soc. 89, 2034–2037 (2006)CrossRefGoogle Scholar
  6. 6.
    N. Martin-Arbella, Í. Bretos, R. Jiménez, M.L. Calzada, R. Sirera, Photoactivation of sol–gel precursors for the low-temperature preparation of PbTiO3 ferroelectric thin films. J. Am. Ceram. Soc. 92, 396–403 (2011)CrossRefGoogle Scholar
  7. 7.
    N. Martin-Arbella, Í. Bretos, R. Jiménez, M.L. Calzada, R. Sirera, Metal complexes with N-methyldiethanolamine as new photosensitive precursors for the low-temperature preparation og ferroelectric thin films. J. Mater. Chem. 21, 9051–9059 (2011)CrossRefGoogle Scholar
  8. 8.
    V.S. Tiwari, A. Kumar, V.K. Wadhawan, D. Pandey, Kinetics of formation of the pyrochlore and perovskite phases in sol–gel derived lead zirconate titanate powder. J. Mater. Res. 13, 2170–2173 (1998)CrossRefGoogle Scholar
  9. 9.
    L.A. Bursill, K.G. Brooks, Crystallization of sol gel derived lead zirconate titanate thin films in argon and oxygen atmospheres. J. Appl. Phys. 75, 4501–4509 (1994)CrossRefGoogle Scholar
  10. 10.
    A.D. Polli, F.F. Lange, Pyrolysis of Pb(Zr0.5Ti0.5)O3 precursors: avoiding lead partitioning. J. Am. Ceram. Soc. 78, 3401–3404 (1995)CrossRefGoogle Scholar
  11. 11.
    T.I. Chang, S.C. Wang, C.P. Liu, C.F. Lin, J.L. Huang, Thermal behaviors and phase evolution of lead zirconate titanate prepared by sol–gel processing: the role of the pyrolysis time before calcination. J. Am. Ceram. Soc. 91, 2545–2552 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Li, H. Kameda, B.N.Q. Trinh, T. Miyasako, P.T. Tue, E. Tokumitsu, et al., A low-temperature crystallization path for device-quality ferroelectric films. Appl. Phys. Lett. 97, 102905 (2010)CrossRefGoogle Scholar
  13. 13.
    K.D. Budd, S.K. Dey, D.A. Payne, Sol–gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Proc. Br Ceram. Soc. 36, 107–121 (1985)Google Scholar
  14. 14.
    M. Khanuja, S. Kala, B.R. Mehta, H. Sharma, S.M. Shivaprasad, B. Balamurgan, et al., XPS and AFM studies of monodispersed Pb/PbO core–shell nanostructures. J. Nanosci. Nanotechnol. 7, 2096–2100 (2007)CrossRefGoogle Scholar
  15. 15.
    G. Mountjoy, D.M. Pickup, R. Anderson, G.W. Wallidge, M.A. Holland, R.J. Newport, et al., Changes in the Zr environment in zirconiasilica xerogels with composition and heat treatment as revealed by Zr K-edge XANES and EXAFS. Phys. Chem. Chem. Phys. 2, 2455–2460 (2000)CrossRefGoogle Scholar
  16. 16.
    D. Peter, T.S. Ertel, H. Bertagnolli, EXAFS study of zirconium alkoxides as precursor in the sol–gel process: I. Structure investigation of the pure alkoxides. J. Sol–Gel Sci. Tech. 3, 91–99 (1994)CrossRefGoogle Scholar
  17. 17.
    M.P. Feth, A. Weber, R. Merkle, U. Reinöhl, H. Bertagnolli, Investigation of the crystallisation behaviour of lead titanate (PT), lead zirconate (PZ) and lead zirconate titanate (PZT) by EXAFS-spectroscopy and X-ray diffraction. J. Sol–Gel Sci. Tech. 27, 193–204 (2003)CrossRefGoogle Scholar
  18. 18.
    T. Yamamoto, What is the origin of pre-edge peaks in K-edge XANES spectra of 3d transition metals: electric dipole or quadrupole? Adv. X-Ray Chem. Anal. Jpn. 38, 45–65 (2007)Google Scholar
  19. 19.
    R.V. Vedrinskii, V.L. Kraizman, A.A. Novakovich, P.V. Demekhin, S.V. Urazhdin, Pre-edge fine structure of the 3d atom K X-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals. J. Phys. Condens. Matter. 10, 9561–9580 (1998)CrossRefGoogle Scholar
  20. 20.
    F. Babonneau, S. Doeuff, A. Leaustic, C. Sanchez, C. Cartier, M. Verdaguer, XANES and EXAFS study of titanium alkoxides. Inorg. Chem. 27, 3166–3172 (1988)CrossRefGoogle Scholar
  21. 21.
    E.R. Camargo, E. Longo, E.R. Leite, V.R. Mastelaro, Phase evolution of lead titanate from its amorphous precursor synthesized by the OPM wet-chemical route. J. Solid State Chem. 177, 1994–2001 (2004)CrossRefGoogle Scholar
  22. 22.
    Y.H. Yu, T. Tyliszczak, A.P. Hitchcock, Pb L3 EXAFS and near-edge studies of lead metal and lead oxides. J. Phys. Chem. Solids 51, 445–451 (1990)CrossRefGoogle Scholar
  23. 23.
    S.S. Sengupta, L. Ma, D.L. Adler, D.A. Payne, Extended X-ray absorption fine structure determination of local structure in sol–gel-derived lead titanate, lead zirconate, and lead zirconate titanate. J. Mater. Res. 10, 1345–1348 (1995)CrossRefGoogle Scholar
  24. 24.
    W.J. Moore, L. Pauling, The crystal structures of the tetragonal monoxides of lead, tin, palladium, and platinum. J. Am. Chem. Soc. 63, 1392–1394 (1941)CrossRefGoogle Scholar
  25. 25.
    J.H. Lee, Y.M. Chiang, Pyrochlore-perovskite phase transformation in highly homogeneous (Pb,La)(Zr,Sn,Ti)O3 powders. J. Mater. Chem. 9, 3107–3111 (1999)CrossRefGoogle Scholar
  26. 26.
    T.I. Chang, J.L. Huang, H.P. Lin, S.C. Wang, H.H. Lu, L. Wu, et al., Effect of drying temperature on structure, phase transformation of sol–gel-derived lead zirconate titanate powders. J. Alloys Compd. 414, 224–229 (2006)CrossRefGoogle Scholar
  27. 27.
    D.L. Bellac, J.M. Kiat, P. Garnier, H. Moudden, P. Sciau, P.A. Buffat, et al., Mechanism of the incommensurate phase in lead oxide -PbO. Phys. Rev. B 52, 13184–13194 (1995)CrossRefGoogle Scholar
  28. 28.
    S.K. Pradhan, M. Gateshki, M. Niederberger, Y. Ren, V. Petkov, PbZr1−xTixO3 by soft synthesis: structural aspects. Phys. Rev. B 76, 014114 (2007)CrossRefGoogle Scholar
  29. 29.
    D.J. Teff, J.C. Huffman, K.G. Caulton, Heterometallic alkoxides of zirconium with tin(II) or lead(II). Inorg. Chem. 35, 2981–2987 (1996)CrossRefGoogle Scholar
  30. 30.
    S. Daniele, R. Papiernik, L.G.H. Pfalzgraf, Single-source precursors of lead titanate: synthesis, molecular structure and reactivity of Pb2Ti2(μ4-O)(μ3-O-i-Pr)2(μ-O-i-Pr)4(O-i-Pr)4. Inorg. Chem. 34, 628–632 (1995)CrossRefGoogle Scholar
  31. 31.
    K. Maki, N. Soyama, S. Mori, K. Ogi, Integr. Ferroelectr. 30, 193 (2000)CrossRefGoogle Scholar
  32. 32.
    J. Perez, P.M. Vilarinho, A.L. Kholkin, Thin Solid Films 449, 20 (2004)CrossRefGoogle Scholar
  33. 33.
    K. Maki, B.T. Liu, Y. So, H. Vu, R. Ramesh, J. Finder, Z. Yu, R. Droopad, K. Eisenbeiser, Integr. Ferroelectr. 52, 19 (2003)CrossRefGoogle Scholar
  34. 34.
    M. Mandeljc, M. Kosec, B. Malic, Z. Samardzija, Integr. Ferroelectr. 36, 163 (2001)CrossRefGoogle Scholar
  35. 35.
    Z.J. Wang, H. Kokawa, H. Takizawa, M. Ichiki, R. Maeda, Appl. Phys. Lett. 86, 212903 (2005)CrossRefGoogle Scholar
  36. 36.
    A. Bhaskar, T.H. Chang, H.Y. Chang, S.Y. Cheng, Thin Solid Films 515, 2891 (2007)CrossRefGoogle Scholar
  37. 37.
    X.D. Zhang, X.J. Meng, J.L. Sun, T. Lin, J.H. Chu, Appl. Phys. Lett. 86, 252902 (2005)CrossRefGoogle Scholar
  38. 38.
    X.D. Zhang, X.J. Meng, J.L. Sun, T. Lin, J.H. Ma, J.H. Chu, N. Wang, J. Dho, J. Mater. Res. 23, 2846 (2008)CrossRefGoogle Scholar
  39. 39.
    M.L. Calzada, I. Bretos, R. Jiménez, H. Guillon, L. Pardo, Adv. Mater. Weinheim, Ger. 16, 1620 (2004)CrossRefGoogle Scholar
  40. 40.
    G. Garnweitner, J. Hentschel, M. Antonietti, M. Niederberger, Chem. Mater. 17, 4594 (2005)CrossRefGoogle Scholar
  41. 41.
    T. Morita, Y. Cho, Appl. Phys. Lett. 85, 2331 (2004)CrossRefGoogle Scholar
  42. 42.
    See supplementary material at for the details of experimental methodsCrossRefGoogle Scholar
  43. 43.
    A. Seifert, A. Vojta, J.S. Speck, F.F. Lange, J. Mater. Res. 11, 1470 (1996)CrossRefGoogle Scholar
  44. 44.
    M.C. Robinson, D.J. Morris, P.D. Hayenga, J.H. Cho, C.D. Richards, R.F. Richards, D.F. Bahr, Appl. Phys. A Mater. Sci. Proc. 852, 135 (2006)CrossRefGoogle Scholar
  45. 45.
    X.J. Lou, J. Appl. Phys. 105, 024101 (2009)CrossRefGoogle Scholar
  46. 46.
    H.N. Al-Shareef, O. Auciello, A.I. Kingon, J. Appl. Phys. 77, 2146 (1995)CrossRefGoogle Scholar
  47. 47.
    Y. Murakami, J. Li, D. Hirose, S. Kohara, T. Shimoda, J. Mater. Chem. C 3, 4490–4499 (2015)CrossRefGoogle Scholar
  48. 48.
    R. Methaapanon, S.M. Geyer, S. Brennan, S.F. Bent, Chem. Mater. 25, 3458–3463 (2013)CrossRefGoogle Scholar
  49. 49.
    Y.C. Choi, B.S. Lee, Jpn. J. Appl. Phys. 38, 4876–4880 (1999)CrossRefGoogle Scholar
  50. 50.
    T.E. Hong, K.Y. Mun, S.K. Choi, J.Y. Park, S.H. Kim, T. Cheon, W.K. Kim, B.Y. Lim, S. Kim, Thin Solid Films 520, 6100–6105 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Bhaskar, P.S. Dobal, S.B. Majumder, R.S. Katiyay, J. Appl. Phys. 89, 2987–2992 (2001)CrossRefGoogle Scholar
  52. 52.
    H. Over, Chem. Rev. 112, 3356–3426 (2012)CrossRefGoogle Scholar
  53. 53.
    M.M. Steeves, D. Deniz, R.J. Lad, Appl. Phys. Lett. 96, 142103 (2010)CrossRefGoogle Scholar
  54. 54.
    Y.K.V. Reddy, D. Mergel, J. Mater. Sci. Mater. Electron. 17, 1029–1034 (2006)CrossRefGoogle Scholar
  55. 55.
    D.J. Yun, H. Ra, S.B. Jo, W. Maeng, S. Lee, S. Park, J.W. Jang, K. Cho, S.W. Rhee, ACS Appl. Mater. Interfaces 4, 4588–4594 (2012)CrossRefGoogle Scholar
  56. 56.
    J.H. Han, S.W. Lee, S.K. Kim, S. Han, C.S. Hwang, C. Dussarrat, J. Gatineau, Chem. Mater. 22, 5700–5706 (2010)CrossRefGoogle Scholar
  57. 57.
    J.H. Han, S.W. Lee, S.K. Kim, S. Han, W. Lee, C.S. Hwang, Chem. Mater. 24, 1407–1414 (2012)CrossRefGoogle Scholar
  58. 58.
    A. Maniwa, H. Chiba, K. Kawano, N. Koiso, H. Oike, T. Furukawa, K. Tada, J. Vac. Sci. Technol. A 33, 01A133 (2015)CrossRefGoogle Scholar
  59. 59.
    M.M. Minjauw, J. Dendooven, B. Capon, M. Schaekers, C. Detavernier, J. Mater. Chem. C 3, 132–137 (2015)CrossRefGoogle Scholar
  60. 60.
    S.K. Park, R. Kanjolia, J. Anthis, R. Odedra, N. Boag, L. Wielunski, Y.J. Chabal, Chem. Mater. 22, 4867–4878 (2010)CrossRefGoogle Scholar
  61. 61.
    J.Y. Park, S. Yeo, T. Cheon, S.H. Kim, M.K. Kim, H. Kim, T.E. Hong, D.J. Lee, J. Alloys Compd. 610, 529–539 (2014)CrossRefGoogle Scholar
  62. 62.
    J.F. Tressler, K. Watanabe, M. Tanaka, J. Am. Ceram. Soc. 79, 525–529 (1996)CrossRefGoogle Scholar
  63. 63.
    Y. Hara, S. Rengakuji, Y. Nakamura, A. Shinagawa, Electrochemistry 70, 13–17 (2002)Google Scholar
  64. 64.
    T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitsu, T. Shimoda, J. Mater. Chem. C 2, 40–49 (2014)CrossRefGoogle Scholar
  65. 65.
    Y. Murakami, P.T. Tue, H. Tsukada, J. Li, T. Shimoda, Proceedings of the 20th International Display Workshops (IDW’13) (2013), pp. 1573–1576Google Scholar
  66. 66.
    H. Kameda, J. Li, D.H. Chi, A. Sugiyama, K. Higashimine, T. Uruga, H. Tanida, K. Kato, T. Kaneda, T. Miyasako, E. Tokumitsu, T. Mitani, T. Shimoda, J. Eur. Ceram. Soc. 32, 1667–1680 (2012)CrossRefGoogle Scholar
  67. 67.
    P. Ghosh, M. Tanemura, T. Soga, M. Zamri, T. Jimbo, Solid State Commun. 147, 15–19 (2008)CrossRefGoogle Scholar
  68. 68.
    S.A. Fouda, G.L. Rempel, Inorg. Chem. 18, 1–8 (1979)CrossRefGoogle Scholar
  69. 69.
    A. Inatomi, M. Abe, Y. Hisaeda, Eur. J. Inorg. Chem. 2009, 4830–4836 (2009)CrossRefGoogle Scholar
  70. 70.
    H.E. Toma, A.D.P. Alexiou, S. Dovidauskas, Eur. J. Inorg. Chem. 2002, 3010–3017 (2002)CrossRefGoogle Scholar
  71. 71.
    M. Barth, X. Ka¨stele, P. Klu¨fers, Eur. J. Inorg. Chem. 2005, 1353–1359 (2005)CrossRefGoogle Scholar
  72. 72.
    W.H. Baur, A.A. Khan, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 27, 2133–2139 (1971)CrossRefGoogle Scholar
  73. 73.
    D.J. Yun, S. Lee, K. Yong, S.W. Rhee, Appl. Phys. Lett. 97, 073303 (2010)CrossRefGoogle Scholar
  74. 74.
    Y. Murakami, J. Li, T. Shimoda, Highly conductive ruthenium oxide thin films by a low-temperature solution process and green laser annealing. Mater. Lett. 152, 121–124 (2015)CrossRefGoogle Scholar
  75. 75.
    M. Fujii, Y. Ishikawa, R. Ishihara, J.V.D. Cingel, M.R.T. Mofrad, M. Horita, et al., Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing. Appl. Phys. Lett. 102, 122107 (2013)CrossRefGoogle Scholar
  76. 76.
    Y. Sugawara, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki, A. Mimura, A high-speed high-sensitivity silicon lateral trench photodetector. IEEE Electron Device Lett. 28, 395–397 (2007)CrossRefGoogle Scholar
  77. 77.
    J. Jiang, S. Kuroki, K. Kotani, T. Ito, Ferroelectric properties of lead zirconate titanate thin film on glass substrate crystallized by continuous-wave green laser annealing. Jpn. J. Appl. Phys. 49, 04DH14 (2010)Google Scholar
  78. 78.
    D.F Foust, J.W. Rose, E.W. Balch, Method of forming ruthenium oxide films. US Patent US 6,417,062 (2002)Google Scholar
  79. 79.
    W.D. Ryden, A.W. Lawson, C.C. Sartain, Electrical transport properties of IrO2 and RuO2. Phys. Rev. B 1, 1494–1500 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations