A Brief Study on Characteristics, Properties, and Applications of CdSe

  • Nitya Garg
Conference paper


This paper summarizes the existing information needed to describe various properties of cadmium selenide semiconductor material. The characteristics or properties of CdSe such as quantum confinement, band structure, absorption, and emission mechanism are being discussed to understand its various properties like optical, electrical, thermal, mechanical, and structural in order to analyze factors affecting device performance. This paper also highlights the research work going on in the field of applications of bulk CdSe material and its nanomaterials reported by different authors across the globe.


CdSe Semiconductor Quantum confinement Direct band gap Band structure 


  1. 1.
    U. Hotje, C. Rose, M. Binnewies. Solid State Sciences, 5 (2003) 1259–1262.CrossRefGoogle Scholar
  2. 2.
    H. Stokes, J. Gunter, D.M. Hatch, J. Dong, H. Wang, J.P. Lewis. Physical Review B, 76 (2007) 12102 (1–4).Google Scholar
  3. 3.
    S.B. Zhang, S.H. Wei, A. Zunger. Journal of Applied Physics, 83 (1998) 3192–3196.CrossRefGoogle Scholar
  4. 4.
    C. Ma, Y. Ding, D. Moore, X. Wang, Z.L. Wang. Journal of the American Chemical Society, 126 (2004) 708–709.CrossRefGoogle Scholar
  5. 5.
    A. Striolo, J. Ward, J. M. Prausnitz, W. J. Parak, D. Zanchet, D. Gerion, D. J. Milliron. Journal of Physical Chemistry B, 106 (2002) 5500–5505.Google Scholar
  6. 6.
    L.S. Li, J. Hu, W. Yang, A.P. Alivisatos. Nanoletters, 1 (2001) 349–351.Google Scholar
  7. 7.
    F. Seker, K. Meeker, T.F. Kuech, A.B. Ellis. Chemical Reviews, 100 (2000) 2505–2536.CrossRefGoogle Scholar
  8. 8.
    T.D. Krauss, L.E. Brus. Physical Review Letters, 83 (1999) 4840–4843.CrossRefGoogle Scholar
  9. 9.
    L.E. Brus. Journal of Physical Chemistry, 90 (1986) 2555–2560.Google Scholar
  10. 10.
    R.K. Capek, I. Moreels, K. Lambert, D.D. Muynck, Q. Zhao, A.V. Tomme, F. Vanhaecke, Z. Hens. Journal of Physical Chemistry C, 114 (2010) 6371–6376.Google Scholar
  11. 11.
    E. Deligoz, K. Colakoglu, Y. Ciftci. Physica B, 373 (2006) 124–130.Google Scholar
  12. 12.
    A.D. Yoffe. Advances in Physics, 50 (2001) 1– 208.CrossRefGoogle Scholar
  13. 13.
    A.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, M.G. Bawendi. Physical Review B, 54 (1996) 4843–4856.CrossRefGoogle Scholar
  14. 14.
    C. Janowitz, O. Günther, G. Jungk, R.L. Johnson, P.V. Santos, M. Cardona, W. Faschinger, H. Sitter. Physical Review B, 50 (1994) 2181–2187.CrossRefGoogle Scholar
  15. 15.
    N. Samarth, H. Luo, J.K. Kurdyna, S.B. Qadri, Y.R. Lee, A.K. Ramdas, N. Otsuka. Applied Physics Letters, 54 (1989) 2680–2682.CrossRefGoogle Scholar
  16. 16.
    I. Hernández. Calderón. Optical properties and electronic structure of wide band gap II-VI semiconductors, In: M.C. Tamargo (ed.), II-VI Semiconductor Materials and their Applications, Taylor and Francis, New York, (2002) 113 –170.Google Scholar
  17. 17.
    L. Li. Anisotropy in CdSe Quantum Rods, University of California, Berkeley, 2003.Google Scholar
  18. 18.
    M. Jarosz. The physics and chemistry of transport in CdSe quantum dots solids, Massachusetts Institute of Technology, 2004.Google Scholar
  19. 19.
    F. Widulle, S. Kramp, N.M. Pyka, A. Gobel, T. Ruf, A. Debernardi, R. Lauck, M. Cardona. Physica B, 448 (1999) 263–264.Google Scholar
  20. 20.
    S. Suresh, C. Arunseshan. Applied Nanoscience, (2013) Scholar
  21. 21.
    H.W. Verleur, A.S. Barker Jr. Physical Review, 155 (1967) 750–763.CrossRefGoogle Scholar
  22. 22.
    K. Takemoto. Exciton Dephasing Mechanism of CdSe and CuBr Quantum Dots Embedded in Matrix, University of Tsukuba, 2003.Google Scholar
  23. 23.
    N.Q. Huong, J.L. Birman. Journal of Chemical Physics, 108 (1998) 1769–1970.Google Scholar
  24. 24.
    L.E. Brus. Journal of Chemical Physics, 110 (1999) 5355–5369.Google Scholar
  25. 25.
    P. Karamanis, G. Maroulis. Journal of Chemical Physics, 124 (2006) 071101–071102.Google Scholar
  26. 26.
    S. Sachi. Handbook on physical properties of semiconductors, Vol. 3, Kluwer Academic Publishers, USA, 2004.Google Scholar
  27. 27.
    J.E.B. Katari, V.L. Colvin, A.P. Alivisatos. Journal of Physical Chemistry, 98 (1994) 4109–4117.Google Scholar
  28. 28.
    M.G. Bawendi, M.L. Steigerwald, L.E. Brus. Annual Review of Physical Chemistry, 41 (1990) 477–496.CrossRefGoogle Scholar
  29. 29.
    D.J. Chadi, R.M. White, W.A. Harrison. Physical Review Letters, 35 (1975) 1372–1375.CrossRefGoogle Scholar
  30. 30.
    Y.Q. Zhang, X.A. Cao. Nanotechnology, 23 (2012) 275702 (1–6).CrossRefGoogle Scholar
  31. 31.
    M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, M. Hrdlicka. Journal of Non-Crystalline Solids, 352 (2006) 544–561.CrossRefGoogle Scholar
  32. 32.
    A. Mondal, T.K. Chaudhuri, P. Pramanik. Solar Energy Materials, 7 (1983) 431–438.CrossRefGoogle Scholar
  33. 33.
    S.O. Oluwafemi, N.Revaprasadu. Physica B, 404 (2009) 1204–1208.Google Scholar
  34. 34.
    M. Shingyoji, D. Gerion, D. Pinkel, J.W. Gray, F.Q. Chen. Talanta 67 (2005) 472–478.CrossRefGoogle Scholar
  35. 35.
    P. Hu, D. Jia, Y. Cao, Y. Huang, L. Liu, J. Luo. Nanoscale Research Letters, 4 (2009) 437–443.CrossRefGoogle Scholar
  36. 36.
    D.F. Underwood, T. Kippeny, S.J. Rosenthal. The European Physical Journal D, 16(1) (2001) 241–244.CrossRefGoogle Scholar
  37. 37.
    P. Cervantes, Q. Williams, M. Côté, O. Zakharov, M.L. Cohen. Physical Review B, 54 (1996) 17585–17590.CrossRefGoogle Scholar
  38. 38.
    N. Al-Hosiny, A. Badawi, M.A.A. Moussa, R. El-Agmy, S. Abdallah. International Journal of Nanoparticles, 5 (2012) 258–266.CrossRefGoogle Scholar
  39. 39.
    W.J. Tropf, M.E. Thomas, T.J. Harris. Properties of crystals and glasses in optical and physical properties of materials, In: M. Bass (ed.), Handbook of optics, Devices measurement and properties II, McGraw-Hill Inc., USA, 1978. 33.2–33.100.Google Scholar
  40. 40.
    C.K.S. Kasap, P. Capper. Wide-Bandgap II–VI Semiconductors: Growth and Properties in Part B Growth and Characterization, In: Handbook of electronic and photonic materials, Springer, Ed. Ist, (2006) 325–339.Google Scholar
  41. 41.
    M. Ohring. The Materials Science of Thin Films, Academic Press, New York, 1992.CrossRefGoogle Scholar
  42. 42.
    S.K.J. Al-Ani, H.H. Mohammed, E.M.N. Al-Fwade. Renewable Energy, 25 (2002) 585–590.CrossRefGoogle Scholar
  43. 43.
    S. Kang, C.K. Kumar, Z. Lee, K. Kim, C. Huh, E. Kim. Applied Physics Letters, 93 (2008) 191116 (1–3).CrossRefGoogle Scholar
  44. 44.
    A.J. Nozik. Physica E, 14 (2002) 115–120.Google Scholar
  45. 45.
    K. Rajeshwar, N.R. de Tacconi, C.R. Chenthamarakshan. Chemistry of Materials, 13 (2001) 2765–2782.CrossRefGoogle Scholar
  46. 46.
    F.C. Luo. Journal of Vacuum Science and Technology, 16 (1979) 1045–1048.CrossRefGoogle Scholar
  47. 47.
    D.K. Ghosh, P.J. Samanta. Infrared Physics, 26 (1986) 335–336.CrossRefGoogle Scholar
  48. 48.
    J.C. Udeajah, Deposition and Characterization of Chalcognide and Halide Thin Solid Films for Industrial Applications, University of Nigeria: Nsukka, 1996.Google Scholar
  49. 49.
    C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menendez-Proupin, A.I. Ekimov. Physical Review B, 57 (1998) 4664–4669.CrossRefGoogle Scholar
  50. 50.
    A.V. Gomonnai, Y.M. Azhniuk, V.O. Yukhymchuk, M. Kranjčec, V.V. Lopushansky. Physica Status Solidi B, 239 (2003) 490–499.Google Scholar
  51. 51.
    P.A.K. Moorthy, G.K. Shivakumar. Thin Solid Films, 121 (1984) 151–158.CrossRefGoogle Scholar
  52. 52.
    S.J. Lade, M.D. Uplane, C.D. Lokhande. Material Chemistry and Physics, 68 (2001) 36–41.CrossRefGoogle Scholar
  53. 53.
    V.M. Garcıa, M.T.S. Nair, P.K. Nair, R.A. Zingaro. Semiconductor Science and Technology, 11 (1996) 427–432.CrossRefGoogle Scholar
  54. 54.
    M. Roth. Nuclear Instruments and Methods in Physics Research Section A, 283 (1989) 291–298.Google Scholar
  55. 55.
    S.P. Yordanov. Bulgarian Journal of Physics, 17 (1990) 507.Google Scholar
  56. 56.
    X. Tang, T.C.M. Graham, B. Urbaszek, C. Bradford, K.A. Prior, R.J. Warburton, B.C. Cavenett. Journal of Superconductivity: Incorporating Novel Magnetism, 16 (2003) 19–22.Google Scholar
  57. 57.
    K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, A. Forchel. Applied Physics Letters, 81 (2002) 2920-.CrossRefGoogle Scholar
  58. 58.
    W.C.W. Chan, S. Nie. Science, 281 (1998) 2016–2018.CrossRefGoogle Scholar
  59. 59.
    N.G. Patel, C.J. Panchal, K.K. Makhijia. Crystal Research and Technology, 29 (1994) 1013–1020.CrossRefGoogle Scholar
  60. 60.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos. Nature, 370 (1994) 354–357.CrossRefGoogle Scholar
  61. 61.
    N. Gaponik, I.L. Radtchenko, G.B. Sukhorukov, H. Weller, A.L. Rogach. Advanced Materials, 14 (2002) 879–882.CrossRefGoogle Scholar
  62. 62.
    J.H. Park, J.Y. Kim, B.D. Chin, Y.C. Kim, J.K. Kim, O.O. Park. Nanotechnology, 15 (2004) 1217–1220.CrossRefGoogle Scholar
  63. 63.
    M. Harrison, S. Kershaw, M. Burt. Pure and Applied Chemistry, 72 (2000) 295–307.CrossRefGoogle Scholar
  64. 64.
    X.H. Gao, S.M. Nie. Trends in Biotechnology, 21 (2003) 371–373.CrossRefGoogle Scholar
  65. 65.
    X.H. Gao, Y.Y. Cui, R.M. Levenson, L.W.K. Chung, S.M. Nie. Nature Biotechnology, 22 (2004) 969–976.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Amity School of Engineering & TechnologyAmity UniversityRanchiIndia

Personalised recommendations