Advertisement

The Molecular Basis of Carcinogenesis

  • Carolina Cavalieri Gomes
  • Marina Gonçalves Diniz
  • Ricardo Santiago Gomez
Chapter
Part of the Head and Neck Cancer Clinics book series (HNCC)

Abstract

In this chapter, we will discuss the molecular basis of carcinogenesis. First understand, and then treat! Better treatment options for cancer and preventive approaches for potentially malignant lesions can be achieved only if the pathobiology of the disease is well understood. We have witnessed a shift in the therapeutic approaches to cancer, from “universal” therapies applied to several different tumour types to tailored and personalized treatment. Each tumour/lesion is unique. As the understanding of malignant transformation and carcinogenesis requires knowledge of molecular and tumour biology, we aim to discuss carcinogenesis initially in a broader context before discussing the effects of carcinogens on the aetiology of potentially malignant oral lesions.

References

  1. 1.
    Vineis P, Schatzkin A, Potter JD. Models of carcinogenesis: an overview. Carcinogenesis. 2010;31:1703–9.CrossRefGoogle Scholar
  2. 2.
    Sonnenschein C, Soto AM. Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol. 2008;18:372–7.CrossRefGoogle Scholar
  3. 3.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6:963–8.CrossRefGoogle Scholar
  4. 4.
    Sottoriva A, Barnes CP, Graham TA. Catch my drift? Making sense of genomic intra-tumour heterogeneity. Biochim Biophys Acta Rev Cancer. 2017;1867:95. pii: S0304-419X(17)30001-X.CrossRefGoogle Scholar
  5. 5.
    Braakhuis BJ, Leemans CR, Brakenhoff RH. A genetic progressionmodel of oral cancer: current evidence and clinical implications. J Oral Pathol Med. 2004;33:317–22.CrossRefGoogle Scholar
  6. 6.
    Cross WC, Graham TA, Wright NA. New paradigms in clonal evolution: punctuated equilibrium in cancer. J Pathol. 2016;240:126–36.CrossRefGoogle Scholar
  7. 7.
    Wood HM, Conway C, Daly C, et al. The clonal relationships between pre-cancer and cancer revealed by ultra-deep sequencing. J Pathol. 2015a;237:296–306.CrossRefGoogle Scholar
  8. 8.
    Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 4th ed. Garland Science: New York, NY; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21054/.Google Scholar
  9. 9.
    Ling H, Vincent K, Pichler M, et al. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 2015;34:5003–11.CrossRefGoogle Scholar
  10. 10.
    Pichler M, Calin GA. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer. 2015;113:569–73.CrossRefGoogle Scholar
  11. 11.
    Gomes CC, de Sousa SF, Calin GA, Gomez RS. The emerging role of long noncoding RNAs in oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:235–41.CrossRefGoogle Scholar
  12. 12.
    Gomes CC, Gomez RS. MicroRNAand oral cancer: future perspectives. Oral Oncol. 2008;44:910–4.CrossRefGoogle Scholar
  13. 13.
    Cervigne NK, Reis PP, Machado J, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 2009a;18:4818–29.CrossRefGoogle Scholar
  14. 14.
    Brito JA, Gomes CC, Guimarães AL, Campos K, Gomez RS. Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia. J Oral Pathol Med. 2014a;43:211–6.CrossRefGoogle Scholar
  15. 15.
    Gibb EA, Enfield KS, Stewart GL, et al. Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions. Oral Oncol. 2011;47:1055–61.CrossRefGoogle Scholar
  16. 16.
    The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.  https://doi.org/10.1038/nature14129.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.CrossRefGoogle Scholar
  18. 18.
    Izumchenko E, Sun K, Jones S, et al. Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res. 2015;8:277–86.CrossRefGoogle Scholar
  19. 19.
    Stricker T, Kumar V. Neoplasia. In: Kumar V, Abbas AK, Aster JC, editors. Robbins basic pathology. Amsterdam: Elsevier; 2013. 928 p.Google Scholar
  20. 20.
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.CrossRefGoogle Scholar
  21. 21.
    Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.CrossRefGoogle Scholar
  22. 22.
    Bunz F. Oncogenes. In: Bunz F, editor. Principles of cancer genetics. Dordrecht: Springer; 2008a. p. 49–74.CrossRefGoogle Scholar
  23. 23.
    Bunz F. Tumor suppressor genes. In: Bunz F, editor. Principles of cancer genetics. Dordrecht: Springer; 2008b. p. 77–123.CrossRefGoogle Scholar
  24. 24.
    Chow AY. Cell cycle control by oncogenes and tumor suppressors: driving the transformation of normal cells into cancerous cells. Nat Educ. 2010;3:7.Google Scholar
  25. 25.
    Bunz F. Genetic instability and cancer. In: Bunz F, editor. Principles of cancer genetics. Dordrecht: Springer; 2008c. p. 125–70.CrossRefGoogle Scholar
  26. 26.
    Giam M, Rancati G. Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 2015;10:3.CrossRefGoogle Scholar
  27. 27.
    Zhang L, Poh CF, Williams M, et al. Loss of heterozygosity (LOH) profiles--validated risk predictors for progression to oral cancer. Cancer Prev Res. 2012;5:1081–9.CrossRefGoogle Scholar
  28. 28.
    Hemmer J, Kreidler J. Flow cytometric DNA ploidy analysis of squamous cell carcinoma of the oral cavity. Comparison with clinical staging and histologic grading. Cancer. 1990;66:317–20.CrossRefGoogle Scholar
  29. 29.
    Giaretti W, Monteghirfo S, Pentenero M, Gandolfo S, Malacarne D, Castagnola P. Chromosomal instability, DNA index, dysplasia, and subsite in oral premalignancy as intermediate endpoints of risk of cancer. Cancer Epidemiol Biomarkers Prev. 2013;22:1133–41.CrossRefGoogle Scholar
  30. 30.
    Sperandio M, Brown AL, Lock C, et al. Predictive value of dysplasia grading and DNA ploidy in malignant transformation of oral potentially malignant disorders. Cancer Prev Res. 2013;6:822–31.CrossRefGoogle Scholar
  31. 31.
    Rubio Bueno P, Naval Gias L, García Delgado R, Domingo Cebollada J, Díaz González FJ. Tumor DNA content as a prognostic indicator in squamous cell carcinoma of the oral cavity and tongue base. Head Neck. 1998;20:232–9.CrossRefGoogle Scholar
  32. 32.
    Brouns ER, Bloemena E, Belien JA, Broeckaert MA, Aartman IH, van der Waal I. DNA ploidy measurement in oral leukoplakia: different results between flow and image cytometry. Oral Oncol. 2012;48:636–40.CrossRefGoogle Scholar
  33. 33.
    Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science. 2001;291(5507):1284–9.CrossRefGoogle Scholar
  34. 34.
    Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27:6398–406.CrossRefGoogle Scholar
  35. 35.
    Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013;23:620–33.CrossRefGoogle Scholar
  36. 36.
    Beatty GL, Gladney WL. Immuneescapemechanisms as a guide for cancerimmunotherapy. Clin Cancer Res. 2015;21:687–92.CrossRefGoogle Scholar
  37. 37.
    Economopoulou P, Agelaki S, Perisanidis C, Giotakis EI, Psyrri A. The promise of immunotherapy in head and neck squamous cell carcinoma. Ann Oncol. 2016;27:1675–85.CrossRefGoogle Scholar
  38. 38.
    You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20.CrossRefGoogle Scholar
  39. 39.
    Arantes LM, de Carvalho AC, Melendez ME, Carvalho AL, Goloni-Bertollo EM. Methylation as a biomarker for head and neck cancer. Oral Oncol. 2014;50:587–92.CrossRefGoogle Scholar
  40. 40.
    Smith IM, Mydlarz WK, Mithani SK, Califano JA. DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage. Int J Cancer. 2007;121:1724–8.CrossRefGoogle Scholar
  41. 41.
    Papillon-Cavanagh S, Lu C, Gayden T, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180–5.CrossRefGoogle Scholar
  42. 42.
    Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.CrossRefGoogle Scholar
  43. 43.
    Gomes CC, Fonseca-Silva T, Galvão CF, Friedman E, De Marco L, Gomez RS. Inter- and intra-lesional molecular heterogeneity of oral leukoplakia. Oral Oncol. 2015;51:178–81.CrossRefGoogle Scholar
  44. 44.
    Mroz EA, Tward AD, Pickering CR, Myers JN, Ferris RL, Rocco JW. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer. 2013;119:3034–42.CrossRefGoogle Scholar
  45. 45.
    Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol. 2014;8:1095–111.CrossRefGoogle Scholar
  46. 46.
    Kumar M, Nanavati R, Modi TG, Dobariya C. Oral cancer: etiology and risk factors: a review. J Can Res Ther. 2016;12:458–63.CrossRefGoogle Scholar
  47. 47.
    Arduino PG, Bagan J, El-Naggar A, Carrozo M. Urban legends series: oral leukoplakia. Oral Dis. 2013;19(7):642–59.CrossRefGoogle Scholar
  48. 48.
    Lodi G, Sardella A, Bez C, Demarosi F, Carrasi A. Interventions for treating oral leukoplakia. Cochrane Database Syst Rev. 2006;4:CD001829.Google Scholar
  49. 49.
    Yalcin E, de la Montes S. Tobacco nitrosamine as culprits in disease: mechanisms reviewed. J Physiol Biochem. 2016;72:107–20.CrossRefGoogle Scholar
  50. 50.
    Alexandrov LB, Ju YS, Haase K, Loo PV, et al. Mutational signature associated with tobacco smoking in human cancer. Science. 2016;354:618–22.CrossRefGoogle Scholar
  51. 51.
    Grigoryeva ES, Kokova DA, Gratchev AN, Cherdyntsev ES, Buldakov MA, Kzhyshkowska JG, Cherdyntseva NV. Smoking-related DNA adducts as potential diagnostic markers of lung cancer: new perspectives. Exp Oncol. 2015;37(1):5–12.PubMedGoogle Scholar
  52. 52.
    Warnakulasuriya KA, Ralhan R. Clinical, pathological, cellular and molecular lesions caused by oral smokeless tobacco--a review. J Oral Pathol Med. 2007;36(2):63–77.CrossRefGoogle Scholar
  53. 53.
    Tilakaratne WM, Ekanayaka RP, Warnakulasuriya S. Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):178–91.CrossRefGoogle Scholar
  54. 54.
    Chattopadhyay A, Ray JG. Molecular pathology of malignant transformation of oral submucous fibrosis. J Environ Pathol Toxicol Oncol. 2016;35(3):193–205.CrossRefGoogle Scholar
  55. 55.
    Maserejian NN. Prospective study of alcohol consumption and risk of oral premalignant lesions in men. Cancer Epidemiol Biomarkers Prev. 2006;15:774–81.CrossRefGoogle Scholar
  56. 56.
    Setshedi M, Wands JR, de la Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010;3:178–85.CrossRefGoogle Scholar
  57. 57.
    Zaravinos A. An updated overview of HPV-associated head and neck carcinomas. Oncotarget. 2014;5:3956–68.CrossRefGoogle Scholar
  58. 58.
    Ying J, Wang F, Lin J. Human papillomavirus 16 as a risk factor for oral leukoplakia: a meta-analysis. Meta Gene. 2017b;12:43–6.CrossRefGoogle Scholar
  59. 59.
    Fakhry C, Psyrri A, Chaturvedi A. HPV and head and neck cancers: sate-of-the-science. Oral Oncol. 2014;50:353–5.CrossRefGoogle Scholar
  60. 60.
    Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29:4294–301.CrossRefGoogle Scholar
  61. 61.
    Lingen MW, Xiao W, Schmitt A, Jiang B, Pickard R, Kreinbrink P, Perez-Ordonez B, Jordan RC, Gillison ML. Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol. 2013;49:1–8.CrossRefGoogle Scholar
  62. 62.
    Bakri MM, Hussaini HM, Holmes AR, Cannon RD, Rich AM. Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma. J Oral Microbiol. 2010;2:5780.CrossRefGoogle Scholar
  63. 63.
    Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil HS. Role of oral microbiome on oral cancers, a review. Biomed Pharmacother. 2016;84:552–8.CrossRefGoogle Scholar
  64. 64.
    Nishisgori C. Current concept of photocarcinogenesis. Phochem Photobiol Sci. 2015;14:1713–21.CrossRefGoogle Scholar
  65. 65.
    Park JM, Kang TH. Transcriptional and posttranslational regulation of nucleotide excision repair: the Guardian of the Genome against Ultraviolet Radiation. Int J Mol Sci. 2016;17:1840.CrossRefGoogle Scholar
  66. 66.
    Brunotto M, Zarate AM, Bono A, Barra JL, Berra S. Risk genes n head and neck cancer: a systematic review and meta-analysis of last 5 years. Oral Oncol. 2014;50(3):178–88.CrossRefGoogle Scholar
  67. 67.
    Siebers TJH, Bergshoeff VE, Otte-Höller I, Kremer B, Speel EJM, van der Laak JAWM, Merkx MAW, Slootweg PJ. Chromosome instability predicts the progression of premalignant oral lesions. Oral Oncol. 2013;49:1121–8.CrossRefGoogle Scholar
  68. 68.
    Shridhar K, Walia GK, Aggarwal A, Gulati S, Geetha AV, Prabhakaran D, Dhillon PK, Rajaraman P. DNA methylation markers for oral pre-cancer progression: a critical review. Oral Oncol. 2016b;53:1–9.CrossRefGoogle Scholar

Copyright information

© Peter A. Brennan, Tom Aldridge, Raghav C. Dwivedi, Rehan Kazi 2019

Authors and Affiliations

  • Carolina Cavalieri Gomes
    • 1
  • Marina Gonçalves Diniz
    • 2
  • Ricardo Santiago Gomez
    • 2
  1. 1.Department of Pathology, Biological Sciences InstituteUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Department of Oral Surgery and Pathology, School of DentistryUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations