Banach Contraction Principle and Applications

  • Praveen AgarwalEmail author
  • Mohamed Jleli
  • Bessem Samet


Banach contraction principle is a fundamental result in Metric Fixed Point Theory. It is a very popular and powerful tool in solving the existence problems in pure and applied sciences. In this chapter, Banach contraction principle and its converse are presented. Moreover, various applications of this famous principle, including mixed Volterra–Fredholm-type integral equations and systems of nonlinear matrix equations, are provided. Some results of this chapter appeared in [3, 5, 13, 19].


  1. 1.
    Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications. Fund. Math. 3, 133–181 (1922)CrossRefGoogle Scholar
  2. 2.
    Berzig, M., Duan, X., Samet, B.: Positive definite solution of the matrix equation \(X=Q-A^*X^{-1}A+B^*X^{-1}B\) via Bhaskar-Lakshmikantham fixed point theorem. Math Sci. 6(27), 1–6 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berzig, M., Samet, B.: Solving systems of nonlinear matrix equations involving Lipshitzian mappings. Fixed Point Theory Appl. 89, 2011 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berzig, M., Samet, B.: Positive solution to a generalized Lyapunov equation via a coupled fixed point theorem in a metric space endowed with a partial order. Filomat 29(8), 1831–837 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bessaga, C.: On the converse of the Banach fixed-point principle. Colloq. Math. 7, 41–43 (1959)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brouwer, L.E.J.: Uber Abbildungen von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)CrossRefGoogle Scholar
  7. 7.
    Czerwik, S.: Special solutions of a functional equation. Ann. Polon. Math. 31, 141–144 (1975)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dehgham, M., Hajarian, M.: An efficient algorithm for solving general coupled matrix equations and its application. Math. Comput. Model. 51, 1118–1134 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)CrossRefGoogle Scholar
  10. 10.
    Diekmann, O.: Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 6, 109–130 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duan, X., Peng, Z., Duan, F.: Positive defined solution of two kinds of nonlinear matrix equations. Surv. Math. Appl. 4, 179–190 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Heinonen, J.: Lectures on analysis on metric spaces. Springer Science & Business Media (2012)Google Scholar
  13. 13.
    Jachymski, J.: A short proof of the converse to the contraction principle and some related results. Topol. Methods Nonlinear Anal. 15, 179–186 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Janos, L.: An application of combinatorial techniques to a topological problem. Bull. Austral. Math. Soc. 9, 439–443 (1973)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liao, A., Yao, G., Duan, X.: Thompson metric method for solving a class of nonlinear matrix equation. Appl. Math. Comput. 216, 1831–1836 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lim, Y.: Solving the nonlinear matrix equation \(X=Q+\sum _{i=1}^m M_i X^{\delta _i}M_i^*\) via a contraction principle. Linear Algebra Appl. 430, 1380–1383 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nussbaum, R.: Hilbert’s projective metric and iterated nonlinear maps. Mem. Am. Math. Soc. 75(391), 1–137 (1988)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Nussbaum, R.: Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations. Differ. Integr. Eq. 7, 1649–1707 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pachpatte, B.G.: On mixed Volterra-Fredholm type integral equations. Ind. J. Pure Appl. Math. 17, 488–496 (1986)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Pao, C.V.: Positive solutions of a nonlinear boundary-value problem of parabolic type. J. Differ. Eq. 22, 145–163 (1976)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ran, A., Reurings, M., Rodman, A.: A perturbation analysis for nonlinear selfadjoint operators. SIAM J. Matrix Anal. Appl. 28, 89–104 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shi, X., Liu, F., Umoh, H., Gibson, F.: Two kinds of nonlinear matrix equations and their corresponding matrix sequences. Linear Multilinear Algebra. 52, 1–15 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sutherland, W.A.: Introduction to metric and topological spaces. Oxford University Press (1975)Google Scholar
  24. 24.
    Tarski, A.: A lattice theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis. Wiley, New York (1958)Google Scholar
  26. 26.
    Thomas, T.: The Axiom of Choice. Dover Publications (2008)Google Scholar
  27. 27.
    Thompson, A.: On certain contraction mappings in a partially ordered vector space. Proc. Am. Math. Soc. 14, 438–443 (1963)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Wong, J.S.W.: Generalizations of the converse of the contraction mapping principle. Canad. J. Math. 18, 1095–1104 (1966)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhoua, B., Duana, G., Li, Z.: Gradient based iterative algorithm for solving coupled matrix equations. Syst. Control Lett. 58, 327–333 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsAnand International College of EngineeringJaipurIndia
  2. 2.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations