The Knapp–Stein Intertwining Operators Revisited: Renormalization and K-spectrum

  • Toshiyuki Kobayashi
  • Birgit Speh
Part of the Lecture Notes in Mathematics book series (LNM, volume 2234)


In this chapter, we discuss the classical Knapp–Stein operators, which may be viewed as a baby case of symmetry breaking operators (i.e., G = G′ case).


  1. 11.
    D.H. Collingwood, Representations of Rank One Lie Groups. Res. Notes in Math., vol. 137 (Pitman (Advanced Publishing Program), Boston, MA, 1985), vii+244 pp.Google Scholar
  2. 22.
    A.W. Knapp, E.M. Stein, Intertwining operators for semisimple groups. Ann. Math. (2) 93, 489–578 (1971)CrossRefGoogle Scholar
  3. 23.
    A.W. Knapp, E.M. Stein, Intertwining operators for semisimple groups. II. Invent. Math. 60, 9–84 (1980)MathSciNetCrossRefGoogle Scholar
  4. 34.
    T. Kobayashi, Residue formula for regular symmetry breaking operators, in Contemp. Math., vol. 714 (Amer. Math. Soc., Province, RI, 2018), pp. 175–193 Available also at arXiv:1709.05035.
  5. 35.
    T. Kobayashi, T. Kubo, M. Pevzner, Conformal Symmetry Breaking Operators for Differential Forms on Spheres. Lecture Notes in Math., vol. 2170 (Springer, 2016), iv+192 pp. ISBN: 978-981-10-2657-7.
  6. 42.
    T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups. Mem. Amer. Math. Soc., vol. 238 (Amer. Math. Soc., Providence, RI, 2015), v+112 pp. ISBN: 978-1-4704-1922-6. MathSciNetCrossRefGoogle Scholar
  7. 49.
    R.P. Langlands, On the Functional Equation Satisfied by Eisenstein Series. Lecture Notes in Math., vol. 544 (Springer, New York, 1976)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toshiyuki Kobayashi
    • 1
    • 2
  • Birgit Speh
    • 3
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Kavli IPMUKashiwaJapan
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations