Symmetry Breaking Operators for Irreducible Representations with Infinitesimal Character ρ: Proof of Theorems4.1 and 4.2

  • Toshiyuki Kobayashi
  • Birgit Speh
Part of the Lecture Notes in Mathematics book series (LNM, volume 2234)


In the first half of this chapter, we give a proof of Theorems  4.1 and  4.2 that determine the dimension of the space of symmetry breaking operators from irreducible representations Π of G = O(n + 1, 1) to irreducible representations π of the subgroup G′ = O(n, 1) when both Π and π have the trivial infinitesimal characters ρ, or equivalently by Theorem  2.20 (2).


  1. 24.
    A.W. Knapp, D.A. Vogan, Jr., Cohomological Induction and Unitary Representations. Princeton Math. Ser., vol. 45 (Princeton Univ. Press, Princeton, NJ, 1995), xx+948 pp. ISBN: 978-0-691-03756-6Google Scholar
  2. 34.
    T. Kobayashi, Residue formula for regular symmetry breaking operators, in Contemp. Math., vol. 714 (Amer. Math. Soc., Province, RI, 2018), pp. 175–193 Available also at arXiv:1709.05035.
  3. 42.
    T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups. Mem. Amer. Math. Soc., vol. 238 (Amer. Math. Soc., Providence, RI, 2015), v+112 pp. ISBN: 978-1-4704-1922-6. MathSciNetCrossRefGoogle Scholar
  4. 55.
    B. Sun, C.-B. Zhu, Multiplicity one theorems: the Archimedean case. Ann. Math. (2) 175, 23–44 (2012). MathSciNetCrossRefGoogle Scholar
  5. 59.
    D.A. Vogan, Jr., Representations of Real Reductive Lie Groups. Progr. Math., vol. 15 (Birkhäuser, Boston, MA, 1981), xvii+754 pp.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toshiyuki Kobayashi
    • 1
    • 2
  • Birgit Speh
    • 3
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Kavli IPMUKashiwaJapan
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations