Silsesquioxane-Based Hierarchical and Hybrid Materials

  • Fuping Dong
  • Chang-Sik HaEmail author


Much attention in scientific community in silsesquioxanes (SSQs) during the recent years has been attracted by the design of hierarchical structure and hybrid composite. The wide variety of SSQ materials with hierarchical morphology including core/shell, hollow, yolk-shell, nanorod and so on have been developed. The present chapter demonstrates the most recent progress made in the design of this morphology by utilizing different preparation methods such as sol-gel, in situ polymerization, electrospinning, etc. In this chapter, special attention is paid to the fabrication and application of the silsesquioxane hybrid composite. The interest in the hybrid nanocomposite is illustrated by a large variety of hybrid materials including polymers, silica, carbon materials, noble metals, and quantum dots.


Silsesquioxane Hybrid Hierarchical morphology Nanocomposite 


  1. 1.
    Schramm C, Rinderer B, Tessadri R (2017) Ladder-like aromatic imide-functionalized poly(silsesquioxane): preparation and characterization via the sol-gel route. Adv Polym Technol 36(1):77–85CrossRefGoogle Scholar
  2. 2.
    Dong F, Ha C-S (2012) Multifunctional materials based on polysilsesquioxanes. Macromol Res 20(4):335–343CrossRefGoogle Scholar
  3. 3.
    Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36(12):1649–1696CrossRefGoogle Scholar
  4. 4.
    Chen Y, Shi J (2016) Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks. Adv Mater 28(17):3235–3272PubMedCrossRefGoogle Scholar
  5. 5.
    Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38(11):879–884PubMedCrossRefGoogle Scholar
  6. 6.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173PubMedCrossRefGoogle Scholar
  7. 7.
    Hu L-C, Shea KJ (2011) Organo-silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand? Chem Soc Rev 40(2):688–695PubMedCrossRefGoogle Scholar
  8. 8.
    Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bai RQ, Qiu T, Han F, He LF, Li XY (2012) Preparation and characterization of inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles. Appl Surf Sci 258(19):7683–7688CrossRefGoogle Scholar
  10. 10.
    Yang SL, Song CF, Qiu T, Guo LH, Li XY (2013) Synthesis of polystyrene/polysilsesquioxane core/shell composite particles via emulsion polymerization in the existence of poly(gamma-methacryloxypropyl trimethoxysilane) sol. Langmuir 29(1):92–101PubMedCrossRefGoogle Scholar
  11. 11.
    Dong F, Xie H, Zheng Q, Ha C-S (2017) Superhydrophobic polysilsesquioxane/polystyrene microspheres with controllable morphology: from raspberry-like to flower-like structure. RSC Adv 7(11):6685–6690CrossRefGoogle Scholar
  12. 12.
    Deng TS, Bongard HJ, Marlow F (2015) A one-step method to coat polystyrene particles with an organo-silica shell and their functionalization. Mater Chem Phys 162:548–554CrossRefGoogle Scholar
  13. 13.
    Sun D, Zhou Z, Chen G-X, Li Q (2014) Regulated dielectric loss of polymer composites from coating carbon nanotubes with a cross-linked silsesquioxane shell through free-radical polymerization. ACS Appl Mater Interfaces 6(21):18635–18643PubMedCrossRefGoogle Scholar
  14. 14.
    Sun D, Li Q, Chen G-X (2014) Preparation of core-shell structured carbon nanotube-silsesquioxane hybrids by a direct free-radical reaction. Mater Lett 120:90–93CrossRefGoogle Scholar
  15. 15.
    Tolbert SH, McFadden PD, Loy DA (2016) New hybrid organic/inorganic polysilsesquioxane-silica particles as sunscreens. ACS Appl Mater Interfaces 8(5):3160–3174PubMedCrossRefGoogle Scholar
  16. 16.
    Olsson RT, Hedenqvist MS, Strom V, Deng J, Savage SJ, Gedde UW (2011) Core-Shell structured ferrite-silsesquioxane-epoxy nanocomposites: composite homogeneity and mechanical and magnetic properties. Polym Eng Sci 51(5):862–874CrossRefGoogle Scholar
  17. 17.
    Bauer AJP, Wu Y, Li B (2016) Electrospun poly(epsilon-caprolactone)/polyhedral oligomeric silsesquioxane-based copolymer blends: evolution of fiber internal structures. Macromol Biosci 16(5):705–716PubMedCrossRefGoogle Scholar
  18. 18.
    Bauer AJP, Zeng T, Liu J, Uthaisar C, Li B (2014) The enhanced encapsulation capacity of polyhedral oligomeric silsesquioxane-based copolymers for the fabrication of electrospun core/shell fibers. Macromol Rapid Commun 35(7):715–720PubMedCrossRefGoogle Scholar
  19. 19.
    Wei K, Wang L, Li L, Zheng S (2015) Synthesis and characterization of bead-like poly(N-isopropylacrylamide) copolymers with double decker silsesquioxane in the main chains. Polym Chem 6(2):256–269CrossRefGoogle Scholar
  20. 20.
    Chen Y, Meng Q, Wu M, Wang S, Xu P, Chen H, Li Y, Zhang L, Wang L, Shi J (2014) Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine. J Am Chem Soc 136(46):16326–16334PubMedCrossRefGoogle Scholar
  21. 21.
    Dong F, Guo W, Chu S-W, Ha C-S (2010) Novel fluorinated polysilsesquioxane hollow spheres: synthesis and application in drug release. Chem Commun 46(40):7498–7500CrossRefGoogle Scholar
  22. 22.
    Dong F, Guo W, Park SS, Ha CS (2011) Uniform and monodisperse polysilsesquioxane hollow spheres: synthesis from aqueous solution and use in pollutant removal. J Mater Chem 21(29):10744–10749CrossRefGoogle Scholar
  23. 23.
    Koike N, Ikuno T, Okubo T, Shimojima A (2013) Synthesis of monodisperse organosilica nanoparticles with hollow interiors and porous shells using silica nanospheres as templates. Chem Commun 49(44):4998–5000CrossRefGoogle Scholar
  24. 24.
    Zou H, Wang R, Li X, Wang X, Zeng S, Ding S, Li L, Zhang Z, Qiu S (2014) An organosilane-directed growth-induced etching strategy for preparing hollow/yolk-shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks. J Mater Chem A 2(31):12403–12412CrossRefGoogle Scholar
  25. 25.
    Xing Y, Peng J, Xu K, Lin W, Gao S, Ren Y, Gui X, Liang S, Chen M (2016) Polymerizable molecular silsesquioxane cage armored hybrid microcapsules with in situ shell functionalization. Chem A Eur J 22(6):2114–2126CrossRefGoogle Scholar
  26. 26.
    Fatieiev Y, Croissant JG, Alsaiari S, Moosa BA, Anjum DH, Khashab NM (2015) Photoresponsive bridged silsesquioxane nanoparticles with tunable morphology for light-triggered plasmid DNA delivery. ACS Appl Mater Interfaces 7(45):24993–24997PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang Z, Xue Y, Zhang P, Muller AHE, Zhang W (2016) Hollow polymeric capsules from POSS-based block copolymer for photodynamic therapy. Macromolecules 49(22):8440–8448CrossRefGoogle Scholar
  28. 28.
    Jiang B, Tao W, Lu X, Liu Y, Jin H, Pang Y, Sun X, Yan D, Zhou Y (2012) A POSS-based supramolecular amphiphile and its hierarchical self-assembly behaviors. Macromol Rapid Commun 33(9):767–772PubMedCrossRefGoogle Scholar
  29. 29.
    Simionescu B, Bordianu I-E, Aflori M, Doroftei F, Mares M, Patras X, Nicolescu A, Olaru M (2012) Hierarchically structured polymer blends based on silsesquioxane hybrid nanocomposites with quaternary ammonium units for antimicrobial coatings. Mater Chem Phys 134(1):190–199CrossRefGoogle Scholar
  30. 30.
    Cao JJ, Zhu QZ, Dou JT, Li CX, Chen WK, Li ZQ (2013) Controlling sol-gel polymerization to create bowl-shaped polysilsesquioxane particles with a kippah structure. Polymer 54(10):2493–2497CrossRefGoogle Scholar
  31. 31.
    Zhou Q, Xiang H, Fan H, Yang X, Zhao N, Xu J (2011) Facile fabrication of golf ball-like hollow microspheres of organic-inorganic silica. J Mater Chem 21(34):13056–13061CrossRefGoogle Scholar
  32. 32.
    Gu JY, Wang XM, Tian L, Feng L, Qu JY, Liu PG, Zhang X (2015) Construction of grape-like silica-based hierarchical porous interlocked microcapsules by colloidal crystals templates. Langmuir 31(45):12530–12536PubMedCrossRefGoogle Scholar
  33. 33.
    Teng Z, Wang S, Su X, Chen G, Liu Y, Luo Z, Luo W, Tang Y, Ju H, Zhao D, Lu G (2014) Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels. Adv Mater 26(22):3741–3747PubMedCrossRefGoogle Scholar
  34. 34.
    Kaneko Y, Toyodome H, Mizumo T, Shikinaka K, Iyi N (2014) Preparation of a sulfo-group-containing rod-like polysilsesquioxane with a hexagonally stacked structure and its proton conductivity. Chem A Eur J 20(30):9394–9399CrossRefGoogle Scholar
  35. 35.
    Kataoka S, Banerjee S, Kawai A, Kamimura Y, Choi J-C, Kodaira T, Sato K, Endo A (2015) Layered hybrid perovskites with micropores created by alkylammonium functional silsesquioxane interlayers. J Am Chem Soc 137(12):4158–4163PubMedCrossRefGoogle Scholar
  36. 36.
    Song D-P, Naik A, Li S, Ribbe A, Watkins JJ (2016) Rapid, large-area synthesis of hierarchical nanoporous silica hybrid films on flexible substrates. J Am Chem Soc 138(41):13473–13476CrossRefGoogle Scholar
  37. 37.
    Wang Z, Dai Z, Wu J, Zhao N, Xu J (2013) Vacuum-dried robust bridged silsesquioxane aerogels. Adv Mater 25(32):4494–4497PubMedCrossRefGoogle Scholar
  38. 38.
    Lee JH, Lee AS, Lee J-C, Hong SM, Hwang SS, Koo CM (2017) Multifunctional mesoporous ionic gels and scaffolds derived from polyhedral oligomeric silsesquioxanes. ACS Appl Mater Interfaces 9(4):3616–3623PubMedCrossRefGoogle Scholar
  39. 39.
    Kim D-G, Kang H, Han S, Lee J-C (2012) Dual effective organic/inorganic hybrid star-shaped polymer coatings on ultrafiltration membrane for bio- and oil-fouling resistance. ACS Appl Mater Interfaces 4(11):5898–5906PubMedCrossRefGoogle Scholar
  40. 40.
    Zheng Y, Wang L, Zheng S (2012) Synthesis and characterization of heptaphenyl polyhedral oligomeric silsesquioxane-capped poly(N-isopropylacrylamide)s. Eur Polym J 48(5):945–955CrossRefGoogle Scholar
  41. 41.
    Ma Y, He L, Pan A, Zhao C (2015) Poly(glycidyl methacrylate-POSS)-co-poly(methyl methacrylate) latex by epoxide opening reaction and emulsion polymerization. J Mater Sci 50(5):2158–2166CrossRefGoogle Scholar
  42. 42.
    Cosgrove T, Swier S, Schmidt RG, Muangpil S, Espidel Y, Griffiths PC, Prescott SW (2015) Impact of end-tethered polyhedral nanoparticles on the mobility of poly(dimethylsiloxane). Langmuir 31(30):8469–8477PubMedCrossRefGoogle Scholar
  43. 43.
    Tong C, Tian Z, Chen C, Li Z, Modzelewski T, Allcock HR (2016) Synthesis and characterization of trifluoroethoxy polyphosphazenes containing polyhedral oligomeric silsesquioxane (POSS) side groups. Macromolecules 49(4):1313–1320CrossRefGoogle Scholar
  44. 44.
    Wang D, Feng S, Liu H (2016) Fluorescence-tuned polyhedral oligomeric silsesquioxane-based porous polymers. Chem A Eur J 22(40):14319–14327CrossRefGoogle Scholar
  45. 45.
    Crowley C, KlanritB P, Butler CR, Varanou A, Plate M, Hynds RE, Chambers RC, Seifalian AM, Birchall MA, Janes SM (2016) Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials 83:283–293PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wang F, Lu X, He C (2011) Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. J Mater Chem 21(9):2775–2782CrossRefGoogle Scholar
  47. 47.
    Cheng B, Li X, Hao J, Yang R (2016) Rheological behavior of polycarbonate/ultrafine Octaphenyl Silsesquioxane (OPS) composites. J Appl Polym Sci 33(27):1–7Google Scholar
  48. 48.
    Ye Y, Tian M, Zhang C, Du Z, Mi J (2016) Understanding controls on wetting at fluorinated polyhedral oligomeric silsesquioxane/polymer surfaces. Langmuir 32(1):230–238PubMedCrossRefGoogle Scholar
  49. 49.
    Yang B, Li M, Hung Z, Wu Y (2011) Preparation and properties of polymethyl mathacrylate-b-polyhedral oligomeric silsesquioxane nanocomposites. Asian J Chem 23(5):2243–2246Google Scholar
  50. 50.
    Yi Y, Li L, Zheng S (2014) Poly(epsilon-caprolactone)-block-poly(N-vinyl pyrrolidone) diblock copolymers grafted from macrocyclic oligomeric silsesquioxane. Polymer 55(16):3925–3935CrossRefGoogle Scholar
  51. 51.
    Mehdi A, Cerclier CV, Le Bideau J, Guyomard D, Dalmas F, Chenal J-M, Chazeau L, Fontaine O, Vioux A (2017) PEO-silsesquioxane flexible membranes: organic-inorganic solid electrolytes with controlled homogeneity and nanostructure. Chemistryselect 2(6):2088–2093CrossRefGoogle Scholar
  52. 52.
    Kuo S-W, Tsai H-T (2010) Control of peptide secondary structure on star shape polypeptides tethered to polyhedral oligomeric silsesquioxane nanoparticle through click chemistry. Polymer 51(24):5695–5704CrossRefGoogle Scholar
  53. 53.
    Ye Q, Zhou H, Xu J (2016) Cubic polyhedral oligomeric silsesquioxane based functional materials: synthesis, assembly, and applications. Chem Asian J 11(9):1322–1337PubMedCrossRefGoogle Scholar
  54. 54.
    Teng CP, Mya KY, Win KY, Yeo CC, Low M, He C, Han M-Y (2014) Star-shaped polyhedral oligomeric silsesquioxane-polycaprolactone-polyurethane as biomaterials for tissue engineering application. NPG Asia Mater 6:1–10CrossRefGoogle Scholar
  55. 55.
    Qiang X, Ma X, Li Z, Hou X (2014) Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application. Colloid Polym Sci 292(7):1531–1544CrossRefGoogle Scholar
  56. 56.
    Zhang W, Wang S, Li X, Yuan J, Wang S (2012) Organic/inorganic hybrid star-shaped block copolymers of poly(L-lactide) and poly(N-isopropylacrylamide) with a polyhedral oligomeric silsesquioxane core: synthesis and self-assembly. Eur Polym J 48(4):720–729CrossRefGoogle Scholar
  57. 57.
    Jia P, Argun AA, Xu J, Xiong S, Ma J, Hammond PT, Lu X (2009) Enhanced electrochromic switching in multilayer thin films of polyaniline-tethered silsesquioxane nanocage. Chem Mater 21(19):4434–4441CrossRefGoogle Scholar
  58. 58.
    Lin W, Xu K, Xin M, Peng J, Xing Y, Chen M (2014) Hierarchical porous polyaniline-silsesquioxane conjugated hybrids with enhanced electrochemical capacitance. RSC Adv 4(74):39508–39518CrossRefGoogle Scholar
  59. 59.
    Lin W, Xu K, Peng J, Xing Y, Gao S, Ren Y, Chen M (2015) Hierarchically structured carbon nanofiber-silsesquioxane-polyaniline nanohybrids for flexible supercapacitor electrodes. J Mater Chem A 3(16):8438–8449CrossRefGoogle Scholar
  60. 60.
    Bai J, Shi Z, Yin J, Tian M (2014) A simple approach to preparation of polyhedral oligomeric silsesquioxane crosslinked poly(styrene-b-butadiene-b-styrene) elastomers with a unique micro-morphology via UV-induced thiol-ene reaction. Polym Chem 5(23):6761–6769CrossRefGoogle Scholar
  61. 61.
    Zhang W, Yuan J, Weiss S, Ye X, Li C, Mueller AHE (2011) Telechelic hybrid poly(acrylic acid)s containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water. Macromolecules 44(17):6891–6898CrossRefGoogle Scholar
  62. 62.
    Pisuchpen T, Intasanta V, Hoven VP (2014) Highly porous organic-inorganic hybrid fiber from copolymers of styrene and polyhedral oligomeric silsesquioxane-derived methacrylate: syntheses, fiber formation and potential modification. Eur Polym J 60:38–48CrossRefGoogle Scholar
  63. 63.
    Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91:90–127PubMedCrossRefGoogle Scholar
  64. 64.
    Hayashi E, Shimokawa T (2016) Synthesis and characterization of hydrophobic and mesoporous silicate-silsesquioxane hybrid copolymers. Microporous Mesoporous Mater 219:178–185CrossRefGoogle Scholar
  65. 65.
    Li X, Tang T, Zhou Y, Zhang Y, Sun Y (2014) Applicability of enzyme-responsive mesoporous silica supports capped with bridged silsesquioxane for colon-specific drug delivery. Microporous Mesoporous Mater 184:83–89CrossRefGoogle Scholar
  66. 66.
    Dopierala K, Bojakowska K, Karasiewicz J, Maciejewski H, Prochaska K (2016) Interfacial behaviour of cubic silsesquioxane and silica nanoparticles in Langmuir and Langmuir-Blodgett films. RSC Adv 6(97):94934–94941CrossRefGoogle Scholar
  67. 67.
    Nagappan S, Ha C-S (2015) Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. J Mater Chem A 3(7):3224–3251CrossRefGoogle Scholar
  68. 68.
    Mi Y, Li K, Liu Y, Pu K-Y, Liu B, Feng S-S (2011) Herceptin functionalized polyhedral oligomeric silsesquioxane – conjugated oligomers – silica/iron oxide nanoparticles for tumor cell sorting and detection. Biomaterials 32(32):8226–8233PubMedCrossRefGoogle Scholar
  69. 69.
    Osorio AG, Machado GB, Pereira MB, Benvenutti EV, Pereira LG, Bergmann CP, de Oliveira AH, Haas Costa TM (2016) Synthesis and characterization of magnetic carbon nanotubes/silsesquioxane nanocomposite thin films. Appl Surf Sci 371:9–15CrossRefGoogle Scholar
  70. 70.
    Nagappan S, Ha HM, Park SS, Jo N-J, Ha C-S (2017) One-pot synthesis of multi-functional magnetite-polysilsesquioxane hybrid nanoparticles for the selective Fe3+ and some heavy metal ions adsorption. RSC Adv 7(31):19106–19116CrossRefGoogle Scholar
  71. 71.
    He H-B, Li B, Dong J-P, Lei Y-Y, Wang T-L, Yu Q-W, Feng Y-Q, Sun Y-B (2013) Mesostructured nanomagnetic polyhedral oligomeric silsesquioxanes (POSS) incorporated with dithiol organic anchors for multiple pollutants capturing in wastewater. ACS Appl Mater Interfaces 5(16):8058–8066PubMedCrossRefGoogle Scholar
  72. 72.
    Moitra N, Kanamori K, Shimada T, Takeda K, Ikuhara YH, Gao X, Nakanishi K (2013) Synthesis of hierarchically porous hydrogen silsesquioxane monoliths and embedding of metal nanoparticles by on-site reduction. Adv Funct Mater 23(21):2714–2722CrossRefGoogle Scholar
  73. 73.
    Zhang H, Oyanedel-Craver V (2013) Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functionalized silsesquioxane coated point-of-use ceramic water filters. J Hazard Mater 260:272–277PubMedCrossRefGoogle Scholar
  74. 74.
    Bai W, Sheng Q, Ma X, Zheng J (2015) Synthesis of silver nanoparticles based on hydrophobic interface regulation and its application of electrochemical catalysis. ACS Sustain Chem Eng 3(7):1600–1609CrossRefGoogle Scholar
  75. 75.
    Schneid AC, Roesch EW, Sperb F, Matte U, da Silveira NP, Costa TMH, Benvenutti EV, de Menezes EW (2014) Silver nanoparticle-ionic silsesquioxane: a new system proposed as an antibacterial agent. J Mater Chem B 2(8):1079–1086CrossRefGoogle Scholar
  76. 76.
    Zhang Y, Shen H-Y, Hai X, Chen X-W, Wang J-H (2017) Polyhedral oligomeric silsesquioxane polymer-caged silver nanoparticle as a smart colorimetric probe for the detection of hydrogen sulfide. Anal Chem 89(2):1346–1352PubMedCrossRefGoogle Scholar
  77. 77.
    Silambarasan K, Kumar AVN, Sivakumar C, Joseph J (2014) Formation of nanogap Au-polysilsesquioxane 1D chains for SERS application. RSC Adv 4(75):40003–40007CrossRefGoogle Scholar
  78. 78.
    Jung JA, Kim YB, Kim YA, Ryu SB, Kim V (2011) Preparation of functional spherical polysilsesquioxane/gold nanoparticle composites and their applications in DNA assay. J Nanopart Res 13(6):2361–2374CrossRefGoogle Scholar
  79. 79.
    Dong F, Guo W, Park SK, Ha CS (2012) Controlled synthesis of novel cyanopropyl polysilsesquioxane hollow spheres loaded with highly dispersed Au nanoparticles for catalytic applications. Chem Commun 48(8):1108–1110CrossRefGoogle Scholar
  80. 80.
    Scholder P, Hafner M, Hassel AW, Nischang I (2016) Gold nanoparticle@polyhedral oligomeric silsesquioxane hybrid scaffolds in microfluidic format – highly efficient and green catalytic platforms. Eur J Inorg Chem 7:951–955CrossRefGoogle Scholar
  81. 81.
    Silva PS d, Gasparini BC, Magosso HA, Spinelli A (2014) Gold nanoparticles hosted in a water-soluble silsesquioxane polymer applied as a catalytic material onto an electrochemical sensor for detection of nitrophenol isomers. J Hazard Mater 273:70–77PubMedCrossRefGoogle Scholar
  82. 82.
    Zapp E, da Silva PS, Westphal E, Gallardo H, Spinelli A, Vieira IC (2014) Troponin T immunosensor based on liquid crystal and silsesquioxane-supported gold nanoparticles. Bioconjug Chem 25(9):1638–1643PubMedCrossRefGoogle Scholar
  83. 83.
    Brigo L, Cittadini M, Artiglia L, Rizzi GA, Granozzi G, Guglielmi M, Martucci A, Brusatin G (2013) Xylene sensing properties of aryl-bridged polysilsesquioxane thin films coupled to gold nanoparticles. J Mater Chem C 1(27):4252–4260CrossRefGoogle Scholar
  84. 84.
    Hwang IS, Kim K-Y, Lim J-H, Kim K-M (2016) Creation of spherical aggregates of Pd nanoparticles on the surface of POSS-modified graphene oxide. Polym Bull (Heidelb Ger) 73(9):2557–2565Google Scholar
  85. 85.
    Park DS, Ha TS, Kim KY, Lim JH, Kim KM (2014) New composites of spherical bridged polysilsesquioxanes and aggregates of Pd nanoparticles with POSS via ionic interactions. Polym Bull 71(4):819–828CrossRefGoogle Scholar
  86. 86.
    Arsalani N, Akbari A, Amini M, Jabbari E, Gautam S, Chae KH (2017) POSS-based covalent networks: supporting and stabilizing Pd for heck reaction in aqueous media. Catal Lett 147(4):1086–1094CrossRefGoogle Scholar
  87. 87.
    Lu C-H, Chang F-C (2011) Polyhedral oligomeric silsesquioxane-encapsulating amorphous palladium nanoclusters as catalysts for heck reactions. ACS Catal 1(5):481–488CrossRefGoogle Scholar
  88. 88.
    Tanabe M, Mutou K, Mintcheva N, Osakada K (2011) Preparation and reactivity of an O,O-chelating silsesquioxane-palladium complex. J Organomet Chem 696(6):1211–1215CrossRefGoogle Scholar
  89. 89.
    Moitra N, Matsushima A, Kamei T, Kanamori K, Ikuhara YH, Gao X, Takeda K, Zhu Y, Nakanishi K, Shimada T (2014) A new hierarchically porous Pd@HSQ monolithic catalyst for Mizoroki-Heck cross-coupling reactions. New J Chem 38(3):1144–1149CrossRefGoogle Scholar
  90. 90.
    Zhao F, Huang Y (2011) Preparation and properties of polyhedral oligomeric silsesquioxane and carbon nanotube grafted carbon fiber hierarchical reinforcing structure. J Mater Chem 21(9):2867–2870CrossRefGoogle Scholar
  91. 91.
    Zhang W, Zhou Z, Li Q, Chen G-X (2014) Controlled dielectric properties of polymer composites from coating multiwalled carbon nanotubes with octa-acrylate silsesquioxane through diels-alder cycloaddition and atom transfer radical polymerization. Ind Eng Chem Res 53(16):6699–6707CrossRefGoogle Scholar
  92. 92.
    Sabet SM, Mahfuz H, Terentis AC, Hashemi J, Boesl B (2016) A facile approach to the synthesis of multi-walled carbon nanotube-polyhedral oligomeric silsesquioxane (POSS) nanohybrids. Mater Lett 168:9–12CrossRefGoogle Scholar
  93. 93.
    Xu K, Lin W, Wu J, Peng J, Xing Y, Gao S, Ren Y, Chen M (2015) Construction and electronic properties of carbon nanotube hybrids with conjugated cubic silsesquioxane. New J Chem 39(11):8405–8415CrossRefGoogle Scholar
  94. 94.
    Estevam RB, Ferreira RT, Bischof ABH, dos Santos FS, Santos CS, Fujiwara ST, Wohnrath K, Lazaro SR, Garcia JR, Pessoa CA (2015) Preparation and characterization of LbL films based on graphene oxide nanoparticles interacting with 3-n-propylpyridinium silsesquioxane chloride. Surf Coatings Technol 275:2–8CrossRefGoogle Scholar
  95. 95.
    Mondal T, Bhowmick AK, Krishnamoorti R (2014) Butyl lithium assisted direct grafting of polyoligomeric silsesquioxane onto graphene. RSC Adv 4(17):8649–8656CrossRefGoogle Scholar
  96. 96.
    Hu L, Jiang P, Bian G, Huang M, Haryono A, Zhang P, Bao Y, Xia J (2017) Effect of octa(aminopropyl) polyhedral oligomeric silsesquioxane (OapPOSS) functionalized graphene oxide on the mechanical, thermal, and hydrophobic properties of waterborne polyurethane composites. J Appl Polym Sci 134(6):1–11CrossRefGoogle Scholar
  97. 97.
    Liao W-H, Yang S-Y, Hsiao S-T, Wang Y-S, Li S-M, Ma C-CM, Tien H-W, Zeng S-J (2014) Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Appl Mater Interfaces 6(18):15802–15812PubMedCrossRefGoogle Scholar
  98. 98.
    Xue Y, Liu Y, Lu F, Qu J, Chen H, Dai L (2012) Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J Phys Chem Lett 3(12):1607–1612PubMedCrossRefGoogle Scholar
  99. 99.
    Bai W, Sheng Q, Zheng J (2016) Hydrophobic interface controlled electrochemical sensing of nitrite based on one step synthesis of polyhedral oligomeric silsesquioxane/reduced graphene oxide nanocomposite. Talanta 150:302–309PubMedCrossRefGoogle Scholar
  100. 100.
    Sun H-J, Tu Y, Wang C-L, Van Horn RM, Tsai C-C, Graham MJ, Sun B, Lotz B, Zhang W-B, Cheng SZD (2011) Hierarchical structure and polymorphism of a sphere-cubic shape amphiphile based on a polyhedral oligomeric silsesquioxane- 60 fullerene conjugate. J Mater Chem 21(37):14240–14247CrossRefGoogle Scholar
  101. 101.
    Zhang W-B, Tu Y, Sun H-J, Yue K, Gong X, Cheng SZD (2012) Polymer solar cells with an inverted device configuration using polyhedral oligomeric silsesquioxane- 60 fullerene dyad as a novel electron acceptor. Sci Chin Chem 55(5):749–754CrossRefGoogle Scholar
  102. 102.
    Semenov SG, Bedrina ME (2013) A quantum chemical study of silsesquioxanes: H8Si8O12, Me8Si8O12, H@Me8Si8O12, He@Me8Si8O, and He@Me8Si8O12. J Struct Chem 54(1):159–163CrossRefGoogle Scholar
  103. 103.
    Zeng Y, Kuo C-I, Hsu C, Najmzadeh M, Sachid A, Kapadia R, Yeung C, Chang E, Hu C, Javey A (2015) Quantum well InAs/AlSb/GaSb vertical tunnel FET with HSQ mechanical support. IEEE Trans Nanotechnol 14(3):580–584CrossRefGoogle Scholar
  104. 104.
    Wang Y, Kalytchuk S, Wang L, Zhovtiuk O, Cepe K, Zboril R, Rogach AL (2015) Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun 51(14):2950–2953CrossRefGoogle Scholar
  105. 105.
    Wang Y, Vaneski A, Yang H, Gupta S, Hetsch F, Kershaw SV, Teoh WY, Li H, Rogach AL (2013) Polyhedral oligomeric silsesquioxane as a ligand for CdSe quantum dots. J Phys Chem C 117(4):1857–1862CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Polymer Materials and Engineering, College of Materials and MetallurgyGuizhou UniversityGuiyangChina
  2. 2.Department of Polymer Science and EngineeringPusan National UniversityBusanSouth Korea

Personalised recommendations