Advertisement

Element-Block Polymeric Materials Based on Cage Silsesquioxane Frameworks

  • Kensuke NakaEmail author
Chapter

Abstract

This chapter focuses on recent efforts to prepare single-component element-block materials based on cage silsesquioxane frameworks. Polyhedral octasilsesquioxanes (POSSs), denoted as (RSiO1.5)8 or labeled T8 cages, are used here as the cage silsesquioxane frameworks. Thermoplastic optically transparent silsesquioxane materials derived from a single cage compound can be achieved by dumbbell- and star-shaped cage structures, allowing precise design of their structures for tuning properties. Incompletely condensed POSS exhibited lower crystallinity without loss of thermal stability in comparison with a completely condensed POSS. Difunctional POSS monomers, which were prepared by a selective corner-opening reaction and a subsequent corner-capping reaction, significantly reduce their crystallinity in comparison with those of monofunctionalized T8 cages. Several examples for polymerization of the difunctional POSS monomers are described.

Keywords

Cage silsesquioxane POSS Incompletely condensed POSS Difunctional POSS monomer 

References

  1. 1.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Synthetic 6FDA–ODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties. Chem Rev 95:1409–1430CrossRefGoogle Scholar
  2. 2.
    Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746CrossRefGoogle Scholar
  3. 3.
    Mikoshiba S, Hayase S (1999) Preparation of low density poly (methylsilsesquioxane)s for LSI interlayer dielectrics with low dielectric constant. Fabrication of angstrom size pores prepared by baking trifluoropropylsilyl copolymers. J Mater Chem 9:591–598CrossRefGoogle Scholar
  4. 4.
    Lee JH, Kim WC, Min SK, Ree HW, Yoon DY (2003) Synthesis of poly(methyl-co-trifluoropropyl) silsesquioxanes and their thin films for low dielectric application. Macromol Mater Eng 288:455–461CrossRefGoogle Scholar
  5. 5.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefGoogle Scholar
  6. 6.
    Laine RM (2005) Nanobuilding blocks based on the [OSiO1.5] (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem 15:3725–3744CrossRefGoogle Scholar
  7. 7.
    Hasegawa I, Ino K, Ohnishi H (2003) An improved procedure for syntheses of silyl derivatives of the cubeoctameric silicate anion. Appl Organomet Chem 17:287–290CrossRefGoogle Scholar
  8. 8.
    Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 36:5666–5682CrossRefGoogle Scholar
  9. 9.
    Sasi kumar R, Ariraman M, Alagar M (2014) Design of lamellar structured POSS/BPZ polybenzoxazine nanocomposites as a novel class of ultra low–k dielectric materials. RSC Adv 4:19127–19136CrossRefGoogle Scholar
  10. 10.
    Kim KM, Chujo Y (2001) Liquid–crystalline organic-inorganic hybrid polymers with functionalized silsesquioxanes. J Polym Sci A Polym Chem 39:4035–4043CrossRefGoogle Scholar
  11. 11.
    Mitsuishi M, Zhao F, Kim Y, Watanabe A, Miyashita T (2008) Preparation of ultrathin silsesquioxane nanofilms via polymer langmuir−Blodgett films. Chem Mater 20:4310–4316CrossRefGoogle Scholar
  12. 12.
    Wahab MA, Mya KY, He CO (2008) Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low–k nanocomposite films. J Polym Sci A Polym Chem 46:5887–5896CrossRefGoogle Scholar
  13. 13.
    Tanaka K, Adachi S, Chujo Y (2009) Structure–property relationship of octa–substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci A Polym Chem 47:5690–5697CrossRefGoogle Scholar
  14. 14.
    Choi J, Yee AF, Laine RM (2004) Toughening of cubic silsesquioxane epoxy nanocomposites using core−shell rubber particles: a three–component hybrid system. Macromolecules 37:3267–3276CrossRefGoogle Scholar
  15. 15.
    Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AL (1998) Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. J Am Chem Soc 120:8380–8391CrossRefGoogle Scholar
  16. 16.
    Lin H, Qu J, Zhang Z, Dong J, Zou H (2013) Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well–controlled 3D skeletal hybrid monoliths. Chem Commun 49:231–233CrossRefGoogle Scholar
  17. 17.
    Jeon JH, Tanaka K, Chujo Y (2014) Light-driven artificial enzymes for selective oxidation of guanosine triphosphate using water–soluble POSS network polymers. Org Biomol Chem 12:6500–6506CrossRefGoogle Scholar
  18. 18.
    Jeon JH, Kakuta T, Tanaka K, Chujo Y (2015) Facile design of organic–inorganic hybrid gels for molecular recognition of nucleoside triphosphates. Bioorg Med Chem Lett 25:2050–2055CrossRefGoogle Scholar
  19. 19.
    Kakuta T, Tanaka K, Chujo Y (2015) Synthesis of emissive water–soluble network polymers based on polyhedral oligomeric silsesquioxane and their application as optical sensors for discriminating the particle size. J Mater Chem C 3:12539–12545CrossRefGoogle Scholar
  20. 20.
    Chujo Y, Tanaka K (2015) New polymeric materials based on element–blocks. Bull Chem Soc Jpn 86:633–643CrossRefGoogle Scholar
  21. 21.
    Araki H, Naka K (2011) Syntheses of dumbbell–shaped trifluoropropyl-substituted POSS derivatives linked by simple aliphatic chains and their optical transparent thermoplastic films. Macromolecules 44:6039–6045CrossRefGoogle Scholar
  22. 22.
    Araki H, Naka K (2012) Syntheses and properties of star– and dumbbell–shaped POSS derivatives containing isobutyl groups. Polym J 44:340–346CrossRefGoogle Scholar
  23. 23.
    Araki H, Naka K (2012) Syntheses and properties of dumbbell–shaped POSS derivatives linked by luminescent π –conjugated units. J Polym Sci A Polym Chem 50:4170–4181CrossRefGoogle Scholar
  24. 24.
    Yasumoto Y, Yamanaka T, Sakurai S, Imoto H, Naka K (2016) Design of low–crystalline and –density isobutyl–substituted caged silsesquioxane derivatives by star–shaped architectures linked with short aliphatic chains. Polym J 48:281–287CrossRefGoogle Scholar
  25. 25.
    Perrin FX, Viet Nguyen TB, Margaillan A (2011) Linear and branched alkyl substituted octakis(dimethylsiloxy)octasilsesquioxanes: WAXS and thermal properties. Eur Polym J 47:1370–1382CrossRefGoogle Scholar
  26. 26.
    Perrin FX, Panaitescu DM, Frone AN, Radovici C, Nicolae C (2013) The influence of alkyl substituents of POSS in polyethylene nanocomposites. Polymer 54:2347–2354CrossRefGoogle Scholar
  27. 27.
    Di Iulio C, Jones MD, Mahon MF, Apperley DC (2010) Zinc(II) silsesquioxane complexes and their application for the ring–opening polymerization of rac–Lactide. Inorg Chem 49:10232–10234CrossRefGoogle Scholar
  28. 28.
    Zhou J, Zhao Y, Yu K, Zhou X, Xie X (2011) Synthesis, thermal stability and photoresponsive behaviors of azobenzene–tethered polyhedral oligomeric silsesquioxanes. New J Chem 35:2781–2792CrossRefGoogle Scholar
  29. 29.
    Yamahiro M, Oikawa H, Yoshida K, Ito K, Yamamoto Y, Tanaka M, Ootake N, Watanabe K, Ohno K, Tsujii Y, Fukuda T (2004) PCT Int. Appl. WO 2004026883 A1 20040401Google Scholar
  30. 30.
    Ionescu G, van der Vlugt JI, Abbenhuis HCL, Vogt D (2005) Synthesis and applications of chiral phosphite ligands derived from incompletely condensed silsesquioxane backbones. Tetrahedron Asymmetry 16:3970–3975CrossRefGoogle Scholar
  31. 31.
    Bian Y, Mijović J (2009) Effect of side chain architecture on dielectric relaxation in polyhedral oligomeric silsesquioxane/polypropylene oxide nanocomposites. Polymer 50:1541–1547CrossRefGoogle Scholar
  32. 32.
    Miyasaka M, Fujiwara Y, Kudo H, Nishikubo T (2010) Synthesis of hyperbranched fluorinated polymers with controllable refractive indices. Polym J 42:799–803CrossRefGoogle Scholar
  33. 33.
    Imoto H, Nakao Y, Nishizawa N, Fujii S, Nakamura Y, Naka K (2015) Tripodal polyhedral oligomeric silsesquioxanes as novel class of three–dimensional emulsifiers. Polym J 47:609–615CrossRefGoogle Scholar
  34. 34.
    Brown JF, Vogt LH (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87:4313–4317CrossRefGoogle Scholar
  35. 35.
    Brown JF (1965) The polycondensation of phenylsilanetriol. J Am Chem Soc 87:4317–4324CrossRefGoogle Scholar
  36. 36.
    Feher FJ, Newman DA, Walzer JF (1989) Silsesquioxanes as models for silica surfaces. J Am Chem Soc 111:1741–1748CrossRefGoogle Scholar
  37. 37.
    Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 10:2526–2528CrossRefGoogle Scholar
  38. 38.
    Feher FJ, Terroba R, Ziller JW (1999) A new route to incompletely–condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chem Commun 69:2309–2310CrossRefGoogle Scholar
  39. 39.
    Yusa S, Ohno S, Honda T, Imoto H, Nakao Y, Naka K, Nakamura Y, Fujii S (2016) Synthesis of silsesquioxane–based element–block amphiphiles and their self–assembly in water. RSC Adv 6:73006–73012CrossRefGoogle Scholar
  40. 40.
    Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate–functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435–8437CrossRefGoogle Scholar
  41. 41.
    Zheng L, Hong S, Cardoen G, Burgaz E, Gido SP, Coughlin EB (2004) Polymer nanocomposites through controlled self–assembly of cubic silsesquioxane scaffolds. Macromolecules 37:8606–8611CrossRefGoogle Scholar
  42. 42.
    Ahn B, Hirai T, Jin S, Rho Y, Kim KW, Kakimoto M, Gopalan P, Hayakawa T, Ree M (2010) Hierarchical structure in nanoscale thin films of a poly(styrene–b– methacrylate grafted with POSS) (PS214b–PMAPOSS27). Macromolecules 43:10568–10581CrossRefGoogle Scholar
  43. 43.
    Wu J, Ge Q, Mather PT (2010) PEG−POSS multiblock polyurethanes: synthesis, characterization, and hydrogel formation. Macromolecules 43:7637–7649CrossRefGoogle Scholar
  44. 44.
    Lee J, Cho HJ, Jung BJ, Cho NS, Shim HK (2004) Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane. Macromolecules 37:8523–8529CrossRefGoogle Scholar
  45. 45.
    Pyun J, Matyjaszewski K (2000) The synthesis of hybrid polymers using atom transfer radical polymerization: homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 33:217–220CrossRefGoogle Scholar
  46. 46.
    Escudé NC, Chen EYX (2009) Stereoregular methacrylate–POSS hybrid polymers: syntheses and nanostructured assemblies. Chem Mater 21:5743–5753CrossRefGoogle Scholar
  47. 47.
    Wright ME, Schorzman DA, Feher FJ, Jin RZ (2003) Synthesis and thermal curing of aryl–ethynyl–terminated coPOSS imide oligomers: new inorganic/organic hybrid resins. Chem Mater 15:264–268CrossRefGoogle Scholar
  48. 48.
    Wu S, Hayakawa T, Kikuchi R, Grunzinger SJ, Kakimoto M, Oikawa H (2007) Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double–decker–shaped silsesquioxane. Macromolecules 40:5698–5705CrossRefGoogle Scholar
  49. 49.
    Wu S, Hayakawa T, Kakimoto M, Oikawa H (2008) Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double–decker–shaped silsesquioxane. Macromolecules 41:3481–3487CrossRefGoogle Scholar
  50. 50.
    Hoque MA, Kakihana Y, Shinke S, Kawakami Y (2009) Polysiloxanes with periodically distributed isomeric double–decker silsesquioxane in the main chain. Macromolecules 42:3309–3315CrossRefGoogle Scholar
  51. 51.
    Wang L, Zhang C, Zheng S (2011) Organic–inorganic poly(hydroxyether of bisphenol A) copolymers with double–decker silsesquioxane in the main chains. J Mater Chem 21:19344–19352CrossRefGoogle Scholar
  52. 52.
    Yoshimatsu M, Komori K, Ohnagamitsu Y, Sueyoshi N, Kawashima N, Chinen S, Murakami Y, Izumi J, Inoki D, Sakai K, Matsuo T, Watanabe K, Kunitake M (2012) Necklace-shaped dimethylsiloxane polymers bearing a polyhedral oligomeric silsesquioxane cage prepared by polycondensation and ring-opening polymerization. Chem Lett 41:622–624CrossRefGoogle Scholar
  53. 53.
    Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ (1993) Silsesquioxane–siloxane copolymers from polyhedral silsesquioxanes. Macromolecules 26:2141–2142CrossRefGoogle Scholar
  54. 54.
    Raftopoulos KN, Jancia M, Aravopoulou D, Hebda E, Pielichowski K, Pissis P (2013) POSS along the hard segments of polyurethane. Phase separation and molecular dynamics. Macromolecules 46:7378–7386CrossRefGoogle Scholar
  55. 55.
    Asuncion MZ, Laine RM (2010) Fluoride rearrangement reactions of polyphenyl– and polyvinylsilsesquioxanes as a facile route to mixed functional phenyl, vinyl T10 and T12 silsesquioxanes. J Am Chem Soc 132:3723–3736CrossRefGoogle Scholar
  56. 56.
    Jung JH, Laine RM (2011) Polymers formed from the reaction of [NH2PhSiO1.5]x[PhSiO1.5]10–x and [NH2PhSiO1.5]x[PhSiO1.5]12–x mixtures (x = 2–4) with the Diglycidyl ether of Bisphenol A. Macromolecules 44:7263–7272CrossRefGoogle Scholar
  57. 57.
    Jung JH, Furgal JC, Clark S, Schwartz M, Chou K, Laine RM (2013) Beads on a Chain (BoC) polymers with model dendronized beads. Copolymerization of [(4-NH2C6H4SiO1.5)6(IPhSiO1.5)2] and [(4-CH3OC6H4SiO1.5)6(IPhSiO1.5)2] with 1,4-Diethynylbenzene (DEB) gives through–chain, extended 3–D conjugation in the excited state that is an average of the corresponding homopolymers. Macromolecules 46:7580–7590CrossRefGoogle Scholar
  58. 58.
    Furgal JC, Jung JH, Clark S, Richard M (2013) Beads on a Chain (BoC) phenylsilsesquioxane (SQ) polymers via F–catalyzed rearrangements and ADMET or reverse heck cross–coupling reactions: through chain, extended conjugation in 3-D with potential for dendronization. Macromolecules 46:7591–7604CrossRefGoogle Scholar
  59. 59.
    Tokunaga T, Koga S, Mizumo T, Ohshita J, Kaneko Y (2015) Facile preparation of a soluble polymer containing polyhedral oligomeric silsesquioxane units in its main chain. Polym Chem 6:3039–3045CrossRefGoogle Scholar
  60. 60.
    Maegawa T, Irie Y, Fueno H, Tanaka K, Naka K (2014) Synthesis and polymerization of a Para–disubstituted T8–caged hexaisobutyl–POSS monomer. Chem Lett 43:1532–1534CrossRefGoogle Scholar
  61. 61.
    Carniato F, Boccaleri E, Marchese L (2008) A versatile route to bifunctionalized silsesquioxane (POSS): synthesis and characterisation of Ticontaining aminopropylisobutyl–POSS. Dalton Trans 1:36–39CrossRefGoogle Scholar
  62. 62.
    Olivero F, Renò F, Carniato F, Rizzi M, Cannas M, Marchese L (2012) A novel luminescent bifunctional POSS as a molecular platform for biomedical applications. Dalton Trans 41:7467–7473CrossRefGoogle Scholar
  63. 63.
    Maegawa T, Irie Y, Imoto H, Fueno H, Naka K (2015) Para–bisvinylhexaisobutyl–substituted T8 caged monomer: synthesis and hydrosilylation polymerization. Polym Chem 6:7487–7632CrossRefGoogle Scholar
  64. 64.
    Maegawa T, Miyashita O, Irie Y, Imoto H, Naka K (2016) Synthesis and properties of polyimides containing hexaisobutyl–substituted T8 cages in their main chains. RSC Adv 6:31751–31757CrossRefGoogle Scholar
  65. 65.
    Bassindale AR, Liu Z, MacKinnon IA, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB (2003) A higher yielding route for T8 silsesquioxane cages and X–ray crystal structures of some novel spherosilicates. Dalton Trans 14:2945–2949CrossRefGoogle Scholar
  66. 66.
    Xiao X, Kong D, Qui X, Zhang W, Zhang F, Liu L, Liu Y, Zhang S, Hu Y, Leng J (2015) Shape–memory polymers with adjustable high glass transition temperatures. Macromolecules 48:3582–3589CrossRefGoogle Scholar
  67. 67.
    Xiao S, Huang RYM, Feng X (2007) Synthetic 6FDA–ODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties. Polymer 48:5355–5368CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Molecular Chemistry and Engineering, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan

Personalised recommendations