Synthesis of Calcium-Phosphate-Based Nanoparticles as Biocompatible and Biofunctional Element Blocks

  • Ayako OyaneEmail author
  • Maki Nakamura


Calcium phosphate (CaP)-based nanoparticles containing functional substances such as DNA and Ag are biocompatible and biofunctional element blocks that are useful as agents for drug and gene delivery and as building blocks for higher-order biomaterials. Such CaP-based nanoparticles can be synthesized via precipitation from labile supersaturated CaP solutions supplemented with functional substances. In this chapter, conventional and laser-assisted precipitation processes for the synthesis of CaP-based nanoparticles are described with a focus on our recent studies. Both precipitation methods are simple (one-pot), rapid (nanoparticle formation occurs within a few tens of minutes), free of harmful additives, and capable of controlling the physicochemical and biological properties of the CaP-based nanoparticles. These characteristics represent advantages for future in vitro and in vivo applications of these precipitation processes and the resulting CaP-based nanoparticles.


Calcium phosphate Precipitation Supersaturated solution Nanoparticle Laser 



Our research was supported by JSPS KAKENHI grant numbers JP16H03831, JP26560250, and JP15F15030, Japan; the Magnetic Health Science Foundation, Japan; and the Amada Foundation, Japan. We would like to thank Dr. Quazi T. H. Shubhra, Ms. Hiroko Araki, Ms. Ikuko Sakamaki, Dr. Yoshiki Shimizu, Dr. Kenji Koga, Dr. Alexander Pyatenko, and Dr. Atsuo Ito from AIST, Dr. Hirofumi Miyaji and Dr. Naoto Koshizaki from Hokkaido University, and Dr. Hideo Tsurushima from the University of Tsukuba for their contributions to our research.


  1. 1.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRefGoogle Scholar
  2. 2.
    Oyane A, Araki H, Sogo Y, Ito A, Tsurushima H (2013) Spontaneous assembly of DNA–amorphous calcium phosphate nanocomposite spheres for surface-mediated gene transfer. CrystEngComm 15:4994–4997CrossRefGoogle Scholar
  3. 3.
    Oyane A, Araki H, Nakamura M, Shimizu Y, Shubhra QTH, Ito A, Tsurushima H (2016) Controlled superficial assembly of DNA–amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery. Coll Surf B, Biointerface 141:519–527CrossRefGoogle Scholar
  4. 4.
    Shubhra QTH, Oyane A, Araki H, Nakamura M, Tsurushima H (2017) Calcium phosphate nanoparticles prepared from infusion fluids for stem cell transfection: process optimization and cytotoxicity analysis. Biomater Sci 5:972–981CrossRefGoogle Scholar
  5. 5.
    Nakamura M, Oyane A (2016) Physicochemical fabrication of calcium phosphate-based thin layers and nanospheres using laser processing in solutions. J Mater Chem B 4:6289–6301CrossRefGoogle Scholar
  6. 6.
    Nakamura M, Oyane A, Sakamaki I, Ishikawa Y, Shimizu Y, Koga K, Kawaguchi K, Koshizaki N (2014) A physicochemical process for fabricating submicrometre calcium iron phosphate spheres. RSC Adv 4:38442–38445CrossRefGoogle Scholar
  7. 7.
    Nakamura M, Oyane A, Sakamaki I, Ishikawa Y, Shimizu Y, Kawaguchi K (2015) Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation. Phys Chem Chem Phys 17:8836–8842CrossRefGoogle Scholar
  8. 8.
    Nakamura M, Oyane A, Shimizu Y, Miyata S, Saeki A, Miyaji H (2016) Physicochemical fabrication of antibacterial calcium phosphate submicrospheres with dispersed silver nanoparticles via coprecipitation and photoreduction under laser irradiation. Acta Biomater 46:299–307CrossRefGoogle Scholar
  9. 9.
    Gebauer D, Cölfen H (2011) Prenucleation clusters and non-classical nucleation. Nano Today 6:564–584CrossRefGoogle Scholar
  10. 10.
    Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351CrossRefGoogle Scholar
  11. 11.
    Oyane A, Onuma K, Kokubo T, Ito A (1999) Clustering of calcium phosphate in the system CaCl2−H3PO4−KCl−H2O. J Phys Chem B 103:8230–8235CrossRefGoogle Scholar
  12. 12.
    Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, de With G, Sommerdijk NAJM (2010) The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9:1010–1014CrossRefGoogle Scholar
  13. 13.
    Barrère F, Layrolle P, van Blitterswijk CA, de Groot K (2000) Fast formation of biomimetic Ca-P coatings on Ti6Al4V. Mater Res Soc Symp Proc 599:135–140CrossRefGoogle Scholar
  14. 14.
    Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669CrossRefGoogle Scholar
  15. 15.
    Wang X, Ito A, Li X, Sogo Y, Oyane A (2011) Signal molecules-calcium phosphate coprecipitation and its biomedical application as a functional coating. Biofabrication 3:022001CrossRefGoogle Scholar
  16. 16.
    Oyane A, Wang X, Sogo Y, Ito A, Tsurushima H (2012) Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomater 8:2034–2046CrossRefGoogle Scholar
  17. 17.
    Oyane A, Uchida M, Onuma K, Ito A (2006) Spontaneous growth of a laminin-apatite nano-composite in a metastable calcium phosphate solution. Biomaterials 27:167–175CrossRefGoogle Scholar
  18. 18.
    Yazaki Y, Oyane A, Tsurushima H, Araki H, Sogo Y, Ito A, Yamazaki A (2014) Coprecipitation of DNA-lipid complexes with apatite and comparison with superficial adsorption for gene transfer applications. J Biomater Appl 28:937–945CrossRefGoogle Scholar
  19. 19.
    Yazaki Y, Oyane A, Sogo Y, Ito A, Yamazaki A, Tsurushima H (2011) Control of gene transfer on a DNA–fibronectin–apatite composite layer by the incorporation of carbonate and fluoride ions. Biomaterials 32:4896–4902CrossRefGoogle Scholar
  20. 20.
    Xie Y, Chen Y, Sun M, Ping Q (2013) A mini review of biodegradable calcium phosphate nanoparticles for gene delivery. Curr Pharm Biotechnol 14:918–925CrossRefGoogle Scholar
  21. 21.
    Sogo Y, Ito A, Fukasawa K, Kondo N, Ishikawa Y, Ichinose N, Yamazaki A (2005) Coprecipitation of cytochrome C with calcium phosphate on hydroxyapatite ceramic. Curr Appl Phys 5:526–530CrossRefGoogle Scholar
  22. 22.
    Mutsuzaki H, Ito A, Sakane M, Sogo Y, Oyane A, Ochiai N (2008) Fibroblast growth factor-2-apatite composite layers on titanium screw to reduce pin tract infection rate. J Biomed Mater Res B Appl Biomater 86:365–374CrossRefGoogle Scholar
  23. 23.
    Bodhak S, Kikuchi M, Sogo Y, Tsurushima H, Ito A, Oyane A (2013) Calcium phosphate coating on a bioresorbable hydroxyapatite/collagen nanocomposite for surface functionalization. Chem Lett 42:1029–1031CrossRefGoogle Scholar
  24. 24.
    Zhou H, Bhaduri S (2012) Novel microwave synthesis of amorphous calcium phosphate nanospheres. J Biomed Mater Res B Appl Biomater 100:1142–1150CrossRefGoogle Scholar
  25. 25.
    Qi C, Zhu YJ, Zhao XY, Lu BQ, Tang QL, Zhao J, Chen F (2013) Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem Eur J 19:981–987CrossRefGoogle Scholar
  26. 26.
    Zhao J, Zhu YJ, Zheng JQ, Chen F, Wu J (2013) Microwave-assisted hydrothermal preparation using adenosine 5′-triphosphate disodium salt as a phosphate source and characterization of zinc-doped amorphous calcium phosphate mesoporous microspheres. Microporous Mesoporous Mater 180:79–85CrossRefGoogle Scholar
  27. 27.
    Rouhani P, Taghavinia N, Rouhani S (2010) Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrason Sonochem 17:853–856CrossRefGoogle Scholar
  28. 28.
    Wang H, Pyatenko A, Kawaguchi K, Li X, Swiatkowska-Warkocka Z, Koshizaki N (2010) Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew Chem Int Ed 49:6361–6364CrossRefGoogle Scholar
  29. 29.
    Nakamura M, Oyane A, Sakamaki I, Shimizu Y, Koga K, Koshizaki N (2015) A physicochemical process for fabricating submicrometer hollow fluorescent spheres of Tb3+-incorporated calcium phosphate. RSC Adv 5:22620–22624CrossRefGoogle Scholar
  30. 30.
    Wu HC, Wang TW, Sun JS, Wang WH, Lin FH (2007) A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology 18:165601CrossRefGoogle Scholar
  31. 31.
    Ansar EB, Ajeesh M, Yokogawa Y, Wunderlich W, Varma H (2012) Synthesis and characterization of iron oxide embedded hydroxyapatite bioceramics. J Am Ceram Soc 95:2695–2699CrossRefGoogle Scholar
  32. 32.
    Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford, p 936Google Scholar
  33. 33.
    Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations