Air-Stable Optoelectronic Devices with Metal Oxide Cathodes

  • Makoto Takada
  • Hiroyoshi NaitoEmail author


Air-stable organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are fabricated by using metal oxide instead of low-work function metals such as Ca as a cathode. The optoelectronic devices are called inverted OLEDs and inverted OPVs and are important for flexible devices. Application of element-block polymers to these inverted devices is demonstrated.


Organic light-emitting diodes Organic photovoltaic cells Metal oxide cathode Polyethyleneimine 


  1. 1.
    Chujo Y, Tanaka K (2015) New polymeric materials based on element-blocks. Bull Chem Soc Jpn 88:633–643. CrossRefGoogle Scholar
  2. 2.
    Müllen K, Scherf U (eds) (2006) Organic light emitting devices: synthesis, properties and applications. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Brabec C, Scherf U, Dyakonov V (eds) (2014) Organic photovoltaics: materials, device physics, and manufacturing technologies, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Morii K, Ishida M, Takashima T et al (2006) Encapsulation-free hybrid organic-inorganic light-emitting diodes. Appl Phys Lett 89:183510-1–183510-3. CrossRefGoogle Scholar
  5. 5.
    Waldauf C, Morana M, Denk P et al (2006) Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl Phys Lett 89:233517-1–233517-3. CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Fuentes-Hernandez C, Shim J et al (2012) A universal method to produce low-work function electrodes for organic electronics. Science 336:327–332. CrossRefPubMedGoogle Scholar
  7. 7.
    He Y, Gong S, Hattori R, Kanicki J (1999) High performance organic polymer light-emitting heterostructure devices. Appl Phys Lett 74:2265–2267. CrossRefGoogle Scholar
  8. 8.
    Friend RH, Gymer RW, Holmes AB et al (1999) Electroluminescence in conjugated polymers. Nature 397:121–128. CrossRefGoogle Scholar
  9. 9.
    Swensen J, Moses D, Heeger AJ et al (2005) Light emission in the channel region of a polymer thin-film transistor fabricated with gold and aluminum for the source and drain electrodes. Synth Met 153:53–56. CrossRefGoogle Scholar
  10. 10.
    Bolink HJ, Brine H, Coronado E, Sessolo M (2010) Hybrid organic-inorganic light emitting diodes: effect of the metal oxide. J Mater Chem 20:4047–4049. CrossRefGoogle Scholar
  11. 11.
    Takada M, Nagase T, Kobayashi T, Naito H (2017) Electron injection in inverted organic light-emitting diodes with poly(ethyleneimine) electron injection layers. Org Electron 50:290–295. CrossRefGoogle Scholar
  12. 12.
    Fukagawa H, Morii K, Hasegawa M et al (2014) Highly efficient and air-stable inverted organic light-emitting diode composed of inert materials. Appl Phys Express 7:082104-1–082104-4. CrossRefGoogle Scholar
  13. 13.
    Zhang F, Inganäs O, Zhou Y, Vandewal K (2016) Development of polymer-fullerene solar cells. Natl Sci Rev 3:222–239. CrossRefGoogle Scholar
  14. 14.
    Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791. CrossRefGoogle Scholar
  15. 15.
    Kim JY, Lee K, Coates NE et al (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225. CrossRefPubMedGoogle Scholar
  16. 16.
    Vohra V, Kawashima K, Kakara T et al (2015) Efficient inverted polymer solar cells employing favourable molecular orientation. Nat Photon 9:403–408. CrossRefGoogle Scholar
  17. 17.
    He Z, Zhong C, Su S et al (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595. CrossRefGoogle Scholar
  18. 18.
    Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868. CrossRefGoogle Scholar
  19. 19.
    Li Y (2012) Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res 45:723–733. CrossRefPubMedGoogle Scholar
  20. 20.
    Saito M, Osaka I, Suzuki Y et al (2015) Highly efficient and stable solar cells based on thiazolothiazole and naphthobisthiadiazole copolymers. Sci Rep 5:14202-1–14202-9. CrossRefGoogle Scholar
  21. 21.
    Liu Y, Zhao J, Li Z et al (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293-1–5293-8. CrossRefGoogle Scholar
  22. 22.
    Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185. CrossRefGoogle Scholar
  23. 23.
    Li S, Ye L, Zhao W et al (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28:9423–9429. CrossRefPubMedGoogle Scholar
  24. 24.
    Lin Y, Zhao F, He Q et al (2016) High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc 138:4955–4961. CrossRefPubMedGoogle Scholar
  25. 25.
    Liu J, Chen S, Qian D et al (2016) Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat Energy 1:16089-1–16089-7. CrossRefGoogle Scholar
  26. 26.
    Zhao W, Qian D, Zhang S et al (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28:4734–4739. CrossRefPubMedGoogle Scholar
  27. 27.
    Bin H, Zhang ZG, Gao L et al (2016) Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J Am Chem Soc 138:4657–4664. CrossRefPubMedGoogle Scholar
  28. 28.
    Lin Y, Wang J, Zhang Z-G et al (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170–1174. CrossRefPubMedGoogle Scholar
  29. 29.
    Bin H, Gao L, Zhang Z-G et al (2016) 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651-1–13651-11. CrossRefGoogle Scholar
  30. 30.
    Liao SH, Jhuo HJ, Cheng YS, Chen SA (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater 25:4766–4771. CrossRefPubMedGoogle Scholar
  31. 31.
    Ye L, Zhang S, Zhao W et al (2014) Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem Mater 26:3603–3605. CrossRefGoogle Scholar
  32. 32.
    Etxebarria I, Guerrero A, Albero J, Garcia-belmonte G (2014) Inverted vs standard PTB7:PC70BM organic photovoltaic devices. The benefit of highly selective and extracting contacts in device performance. Org Electron 15:2756–2762. CrossRefGoogle Scholar
  33. 33.
    Nishida K, Oka M, Hase H, Naito H (2010) Determination of physical parameter in organic bulk heterojunction solar cells using a genetic algorithm. IEEJ Trans EIS 130:1–5. CrossRefGoogle Scholar
  34. 34.
    Adachi C (2014) Third-generation organic electroluminescence materials. Jpn J Appl Phys 53:060101-1–060101-11. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physics and ElectronicsOsaka Prefecture UniversitySakaiJapan
  2. 2.The Research Institute for Molecular Electronic DevicesOsaka Prefecture UniversitySakaiJapan

Personalised recommendations