Advertisement

Si-, Ge-, and Sn-Bridged Biaryls as π-Conjugated Element Blocks

  • Yohei Adachi
  • Joji Ohshita
Chapter

Abstract

Biaryls, such as bithiophene and bipyridyl, are intramolecularly bridged by group 14 heavy elements, silicon, germanium, and tin, to produce element blocks having condensed tricyclic systems with silole, germole, and stannole as the center ring. These bridged biaryls exhibit interesting properties arising from the characteristics of both the biaryl units and the bridging elements. In this chapter, recent development in functional organic materials containing the bridged biaryl systems as the core structure is described. The electronic states and properties of the bridged biaryls are discussed on the basis of the results of optical and electrochemical measurements and quantum chemical calculations, to explore how the element bridges contribute to the improvement of desired properties, such as photoluminescent, carrier transport, photovoltaic, and chromic properties.

Keywords

Dithienometallole Dipyridinometallole Group 14 element Conjugated polymer Optoelectronic application 

Notes

Acknowledgments

The work presented in this chapter was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas, “New Polymeric Materials Based on Element-Blocks (No. 2401)” (JSPS KAKENHI Grant Number JP24102005).

References

  1. 1.
    Tamao K, Uchida M, Izumizawa T, Furukawa K, Yamaguchi S (1996) Silole derivatives as efficient electron transporting materials. J Am Chem Soc 118(47):11974–11975.  https://doi.org/10.1021/ja962829c CrossRefGoogle Scholar
  2. 2.
    Yamaguchi S, Tamao K (1998) Silole-containing σ- and π-conjugated compounds. J Chem Soc Dalton Trans 22:3693–3702.  https://doi.org/10.1039/A804491K CrossRefGoogle Scholar
  3. 3.
    Yamaguchi S, Tamao K (2005) A key role of orbital interaction in the main group element-containing π-electron systems. Chem Lett 34(1):2–7.  https://doi.org/10.1246/cl.2005.2 CrossRefGoogle Scholar
  4. 4.
    Ponomarenko SA, Kirchmeyer S (2011) Conjugated organosilicon materials for organic electronics and photonics. Adv Polym Sci 235:33–110.  https://doi.org/10.1007/12_2009_48 CrossRefGoogle Scholar
  5. 5.
    Liu J, Lam JWY, Tang BZ (2009) Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J Inorg Organomet Polym 19(3):249–285.  https://doi.org/10.1007/s10904-009-9282-8 CrossRefGoogle Scholar
  6. 6.
    Chen J, Cao Y (2007) Silole-containing polymers: chemistry and optoelectronic properties. Macromol Rapid Commun 28(17):1714–1742.  https://doi.org/10.1002/marc.200700326 CrossRefGoogle Scholar
  7. 7.
    Zhao Z, He B, Tang BZ (2015) Aggregation-induced emission of siloles. Chem Sci 6(10):5347–5365.  https://doi.org/10.1039/C5SC01946J CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ohshita J, Nodono M, Watanabe T, Ueno Y, Kunai A, Harima Y, Yamashita K, Ishikawa M (1998) Synthesis and properties of dithienosiloles. J Organomet Chem 553(1–2):487–491.  https://doi.org/10.1016/S0022-328X(97)00643-8 CrossRefGoogle Scholar
  9. 9.
    Ohshita J, Nodono M, Kai H, Watanabe T, Kunai A, Komaguchi K, Shiotani M, Adachi A, Okita K, Harima Y, Yamashita K, Ishikawa M (1999) Synthesis and optical, electrochemical, and electron-transporting properties of silicon-bridged bithiophenes. Organometallics 18(8):1453–1459.  https://doi.org/10.1021/om980918n CrossRefGoogle Scholar
  10. 10.
    Ohshita J (2009) Conjugated oligomers and polymers containing dithienosilole units. Macromol Chem Phys 210(17):1360–1370.  https://doi.org/10.1002/macp.200900180 CrossRefGoogle Scholar
  11. 11.
    Ohshita J, Kai H, Takata A, Iida T, Kunai A, Ohta N, Komaguchi K, Shiotani M, Adachi A, Sakamaki K (2001) Effects of conjugated substituents on the optical, electrochemical, and electron-transporting properties of dithienosiloles. Organometallics 20(23):4800–4805.  https://doi.org/10.1021/om0103254 CrossRefGoogle Scholar
  12. 12.
    Ohshita J, Kurushima Y, Lee KH, Kunai A, Ooyama Y, Harima Y (2007) Synthesis of bis(diaryl phosphino)dithienosilole derivatives as novel photo- and electroluminescence materials. Organometallics 26(26):6591–6595.  https://doi.org/10.1021/om700765w CrossRefGoogle Scholar
  13. 13.
    Ohshita J, Tominaga Y, Mizumo T, Kuramochi Y, Higashimura H (2011) Synthesis and optical properties of a bis(diphenylphosphino)dithienosilole-digold(I) complex. Heteroat Chem 22(3–4):514–517.  https://doi.org/10.1002/hc.20715 CrossRefGoogle Scholar
  14. 14.
    Ohshita J, Tominaga Y, Tanaka D, Ooyama Y, Mizumo T, Kobayashi N, Higashimura H (2013) Synthesis of dithienosilole-based highly photoluminescent donor-acceptor type compounds. Dalton Trans 42(10):3646–3652.  https://doi.org/10.1039/C2DT32738D CrossRefGoogle Scholar
  15. 15.
    Usta H, Lu G, Facchetti A, Marks TJ (2006) Dithienosilole− and dibenzosilole−thiophene copolymers as semiconductors for organic thin-film transistors. J Am Chem Soc 128(28):9034–9035.  https://doi.org/10.1021/ja062908g CrossRefPubMedGoogle Scholar
  16. 16.
    Lu G, Usta H, Risko C, Wang L, Facchetti A, Ratner MA, Marks TJ (2008) Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. Experiment and theory. J Am Chem Soc 130(24):7670–7685.  https://doi.org/10.1021/ja800424m CrossRefPubMedGoogle Scholar
  17. 17.
    Hou J, Chen HY, Zhang S, Li G, Yang Y (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc 130(48):16144–16145.  https://doi.org/10.1021/ja806687u CrossRefPubMedGoogle Scholar
  18. 18.
    Chu TY, Lu J, Beaupré S, Zhang Y, Pouliot JR, Zhou J, Najari A, Leclerc M, Tao Y (2012) Effects of the molecular weight and the side-chain length on the photovoltaic performance of dithienosilole/thienopyrrolodione copolymers. Adv Funct Mater 22(11):2345–2351.  https://doi.org/10.1002/adfm.201102623 CrossRefGoogle Scholar
  19. 19.
    Ohshita J, Hwang YM, Mizumo T, Yoshida H, Ooyama Y, Harima Y, Kunugi Y (2011) Synthesis of dithienogermole-containing π-conjugated polymers and applications to photovoltaic cells. Organometallics 30(12):3233–3236.  https://doi.org/10.1021/om200081b CrossRefGoogle Scholar
  20. 20.
    Amb CM, Chen S, Graham KR, Subbiah J, Small CE, So F, Reynolds JR (2011) Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J Am Chem Soc 133(26):10062–10065.  https://doi.org/10.1021/ja204056m CrossRefPubMedGoogle Scholar
  21. 21.
    Gendron D, Morin PO, Berrouard P, Allard N, Aïch BR, Garon CN, Tao Y, Leclerc M (2011) Synthesis and photovoltaic properties of poly(dithieno[3,2-b:2′,3′-d]germole) derivatives. Macromolecules 44(18):7188–7193.  https://doi.org/10.1021/ma2013496 CrossRefGoogle Scholar
  22. 22.
    Small CE, Chen S, Subbiah J, Amb CM, Tsang SW, Lai TH, Reynolds JR, So F (2011) High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat Photon 6:115–120.  https://doi.org/10.1038/NPHOTON.2011.317 CrossRefGoogle Scholar
  23. 23.
    Guo X, Zhou N, Lou SJ, Hennek JW, Ortiz RP, Butler MR, Boudreault PLT, Strzalka J, Morin PO, Leclerc M, Navarrete JTL, Ratner MA, Chen LX, Chang PH, Facchetti A, Marks TJ (2012) Bithiopheneimide–dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure–property–device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues. J Am Chem Soc 134:18427–18439.  https://doi.org/10.1021/ja3081583 CrossRefPubMedGoogle Scholar
  24. 24.
    Yau CP, Fei Z, Ashraf RS, Shahid M, Watkins SE, Pattanasattayavong P, Anthopoulos TD, Gregoriou VG, Chohos CL, Heeney M (2014) Influence of the electron deficient co-monomer on the optoelectronic properties and photovoltaic performance of dithienogermole-based co-polymers. Adv Funct Mater 24(5):678–687.  https://doi.org/10.1002/adfm.201302270 CrossRefGoogle Scholar
  25. 25.
    Constantinou I, Lai TH, Zhao D, Klump ED, Deininger JJ, Lo CK, Reynolds JR, So F (2016) High efficiency air-processed dithienogermole-based polymer solar cells. ACS Appl Mater Interfaces 7(8):4826–4832.  https://doi.org/10.1021/am5087566 CrossRefGoogle Scholar
  26. 26.
    Gupta V, Lai LF, Datt R, Chand S, Heeger AJ, Bazan GC, Singh SP (2016) Dithienogermole-based solution-processed molecular solar cells with efficiency over 9%. Chem Commun 52:8596–8599.  https://doi.org/10.1039/C6CC03998G CrossRefGoogle Scholar
  27. 27.
    Ohshita J, Miyazaki M, Zhang FB, Tanaka D, Morihara Y (2013) Synthesis and properties of dithienometallole-pyridinochalcogenadiazole alternate polymers. Polym J 45(9):979–984.  https://doi.org/10.1038/pj.2013.13 CrossRefGoogle Scholar
  28. 28.
    Fei Z, Ashraf RS, Huang Z, Smith J, Kline RJ, Angelo PD, Anthopoulos TD, Durrant JR, McCulloch I, Heeney M (2012) Germaindacenodithiophene based low band gap polymers for organic solar cells. Chem Commun 48:2955–2957.  https://doi.org/10.1039/C2CC17996B CrossRefGoogle Scholar
  29. 29.
    Zhong H, Li Z, Deledalle F, Fregoso EC, Shahid M, Fei Z, Nielsen CB, Yaacobi-Gross N, Rossbauer S, Anthopoulos TD, Durrant JR, Heeney M (2013) Fused dithienogermolodithiophene low band gap polymers for high-performance organic solar cells without processing additives. J Am Chem Soc 135(6):2040–2043.  https://doi.org/10.1021/ja311700u CrossRefPubMedGoogle Scholar
  30. 30.
    Ashraf RS, Schroeder BC, Bronstein HA, Huang Z, Thomas S, Kline RJ, Brabec CJ, Rannou P, Anthopoulos TD, Durrant JR, McCulloch I (2013) The influence of polymer purification on photovoltaic device performance of a series of indacenodithiophene donor polymers. Adv Mater 25(14):2029–2034.  https://doi.org/10.1002/adma.201300027 CrossRefPubMedGoogle Scholar
  31. 31.
    Kai H, Ohshita J, Ohara S, Nakayama N, Kunai A, Lee IS, Kwak YW (2008) Disilane- and siloxane-bridged biphenyl and bithiophene derivatives as electron-transporting materials in OLEDs. J Organomet Chem 693(1):3490–3494.  https://doi.org/10.1016/j.jorganchem.2008.08.018 CrossRefGoogle Scholar
  32. 32.
    Ohshita J, Nakashima M, Tanaka D, Morihara Y, Fueno H, Tanaka K (2014) Preparation of a D–A polymer with disilanobithiophene as a new donor component and application to high-voltage bulk heterojunction polymer solar cells. Polym Chem 5(2):346–349.  https://doi.org/10.1039/C3PY01157G CrossRefGoogle Scholar
  33. 33.
    Nakashima M, Murata N, Suenaga Y, Naito H, Sasaki T, Kunugi Y, Ohshita J (2016) Disilanobithiophene-dithienylbenzothiadiazole alternating polymer as donor material of bulk heterojunction polymer solar cells. Synth Met 215:116.  https://doi.org/10.1016/j.synthmet.2016.02.012 CrossRefGoogle Scholar
  34. 34.
    Nakashima M, Otsura T, Naito H, Ohshita J (2015) Synthesis of new D-A polymers containing disilanobithiophene donor and application to bulk heterojunction polymer solar cells. Polym J 47(11):733–738.  https://doi.org/10.1038/pj.2015.61 CrossRefGoogle Scholar
  35. 35.
    Nakashima M, Ooyama Y, Sugiyama T, Naito H, Ohshita J (2016) Synthesis of a conjugated D-A polymer with bi(disilanobithiophene) as a new donor component. Molecules 21(6):789–795.  https://doi.org/10.3390/molecules21060789 CrossRefGoogle Scholar
  36. 36.
    Ohshita J, Matsukawa J, Hara M, Kunai A, Kajiwara S, Ooyama Y, Harima Y, Kakimoto M (2008) Chem Lett 37(11):316–317.  https://doi.org/10.1246/cl.2008.316 CrossRefGoogle Scholar
  37. 37.
    Ohshita J, Adachi Y, Tanaka D, Nakashima M, Ooyama Y (2015) Synthesis of D–A polymers with a disilanobithiophene donor and a pyridine or pyrazine acceptor and their applications to dye-sensitized solar cells. RSC Adv 5(46):36673–36679.  https://doi.org/10.1039/c5ra01055a CrossRefGoogle Scholar
  38. 38.
    Unno M, Kakiage K, Yamamura M, Kogure T, Kyomen T, Hanaya M (2010) Silanol dyes for solar cells: higher efficiency and significant durability. Appl Organomet Chem 24:247–250.  https://doi.org/10.1002/aoc.1612 CrossRefGoogle Scholar
  39. 39.
    Ohshita J, Nakamura M, Ooyama Y (2015) Preparation and reactions of dichlorodithienogermoles. Organometallics 34(23):5609–5614.  https://doi.org/10.1021/acs.organomet.5b00832 CrossRefGoogle Scholar
  40. 40.
    Nakamura M, Ooyama Y, Hayakawa S, Nishino M, Ohshita J (2016) Synthesis of poly(dithienogermole)s. Organometallics 35(14):2333.  https://doi.org/10.1021/acs.organomet.6b00263 CrossRefGoogle Scholar
  41. 41.
    Ohshita J, Nakamura M, Yamamoto K, Watase S, Matsukawa K (2015) Synthesis of dithienogermole-containing oligo- and polysilsesquioxanes as luminescent materials. Dalton Trans 44(17):8214–8220.  https://doi.org/10.1039/C5DT00777A CrossRefPubMedGoogle Scholar
  42. 42.
    Nakamura M, Shigeoka K, Adachi Y, Ooyama Y, Watase S, Ohshita J (2017) Preparation of dithienogermole-containing polysilsesquioxane films for sensing nitroaromatics. Chem Lett 46(4):438–441.  https://doi.org/10.1246/cl.161119 CrossRefGoogle Scholar
  43. 43.
    Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22(5):1915–1925.  https://doi.org/10.1021/cm9036988 CrossRefGoogle Scholar
  44. 44.
    Adachi Y, Ooyama Y, Shibayama N, Ohshita J (2017) Dithienogermole-containing D-π-A-π-A photosensitizers for dye-sensitized solar cells. Chem Lett 46(3):310–312.  https://doi.org/10.1246/cl.161034 CrossRefGoogle Scholar
  45. 45.
    Ohshita J, Miyazaki M, Tanaka D, Morihara Y, Fujita Y, Kunugi Y (2013) Synthesis of poly(dithienogermole-2,6-diyl)s. Polym Chem 4(10):3116–3122.  https://doi.org/10.1039/c3py00253e CrossRefGoogle Scholar
  46. 46.
    Ohshita J, Adachi Y, Sagisaka R, Nakashima M, Ooyama Y, Kunugi Y (2017) Synthesis of dithienogermole-containing polythiophenes. Synth Met 227:87–92.  https://doi.org/10.1016/j.synthmet.2017.03.009 CrossRefGoogle Scholar
  47. 47.
    Nakashima M, Miyazaki M, Ooyama Y, Fujita Y, Murata S, Kunugi Y, Ohshita J (2016) Synthesis of silicon- or carbon-bridged polythiophenes and application to organic thin-film transistors. Polym J 48(5):645–651.  https://doi.org/10.1038/pj.2015.121 CrossRefGoogle Scholar
  48. 48.
    Tanaka D, Ohshita J, Ooyama Y, Kobayashi N, Higashimura H, Nakanishi T, Hasegawa Y (2013) Synthesis, optical properties, and crystal structures of dithienostannoles. Organometallics 32(15):4136–4141.  https://doi.org/10.1021/om400213q CrossRefGoogle Scholar
  49. 49.
    Nagao I, Shimizu M, Hiyama T (2009) 9-Stannafluorenes: 1,4-dimetal equivalents for aromatic annulation by double cross-coupling. Angew Chem Int Ed 48(41):7573–7576.  https://doi.org/10.1002/anie.200903779 CrossRefGoogle Scholar
  50. 50.
    Zhang FB, Adachi Y, Ooyama Y, Ohshita J (2016) Synthesis and properties of benzofuran-fused silole and germole derivatives: reversible dimerization and crystal structures of monomers and dimers. Organometallics 35(14):2327–2332.  https://doi.org/10.1021/acs.organomet.6b00222 CrossRefGoogle Scholar
  51. 51.
    Zhang FB, Ooyama Y, Ohshita J (2017) Synthesis of (benzofurano)(benzothieno)germole. Chem Sel 2(10):3106–3109.  https://doi.org/10.1002/slct.201700597 CrossRefGoogle Scholar
  52. 52.
    Pao YC, Chen YL, Chen YT, Cheng SW, Lai YY, Haung WC, Cheng YJ (2014) Synthesis and molecular properties of tricyclic biselenophene-based derivatives with nitrogen, silicon, germanium, vinylidene, and ethylene bridges. Org Lett 16(21):5724–5727CrossRefGoogle Scholar
  53. 53.
    Ohshita J, Murakami K, Tanaka D, Ooyama Y, Mizumo T, Kobayashi N, Higashimura H, Nakanishi T, Hasegawa Y (2014) Synthesis of group 14 dipyridinometalloles with enhanced electron-deficient properties and solid-state phosphorescence. Organometallics 33(2):517–521. doi: https://doi.org/10.1021/om401019b CrossRefGoogle Scholar
  54. 54.
    Durben S, Baumgartner T (2011) 3,7-Diazadibenzophosphole oxide: a phosphorus-bridged viologen analogue with significantly lowered reduction threshold. Angew Chem Int Ed 50(34):7948–4952.  https://doi.org/10.1002/anie.201102453 CrossRefGoogle Scholar
  55. 55.
    Ohshita J, Hayashi Y, Murakami K, Enoki T, Ooyama Y (2016) Single oxygen generation sensitized by spiro(dipyridinogermole)(dithienogermole)s. Dalton Trans 45(39):15679–15683.  https://doi.org/10.1039/c6dt02767a CrossRefPubMedGoogle Scholar
  56. 56.
    Murakami K, Ooyama Y, Higashimura H, Ohshita J (2016) Synthesis, properties, and polymerization of spiro[(dipyridinogermole)(dithienogermole)]. Organometallics 35(1):20–26.  https://doi.org/10.1021/acs.organomet.5b00817 CrossRefGoogle Scholar
  57. 57.
    Murakami K, Ooyama Y, Watase S, Matsukawa K, Omagari S, Nakanishi T, Hasegawa Y, Inumaru K, Ohshita J (2016) Synthesis of dipyridinogermole-copper complex as soluble phosphorescent material. Chem Lett 45(5):502–504.  https://doi.org/10.1246/cl.160036 CrossRefGoogle Scholar
  58. 58.
    Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2005) Luminescence ranging from red to blue: a series of copper(I)−halide complexes having rhombic {Cu2(μ-X)2} (X = Br and I) units with N-Heteroaromatic ligands. Inorg Chem 44(26):9667–9675.  https://doi.org/10.1021/ic0510359 CrossRefGoogle Scholar
  59. 59.
    Murakami K, Ohshita J, Inagi S, Tomita I (2015) Synthesis, and optical and electrochemical properties of germanium-bridged viologen. Electrochemistry 83(8):605–608.  https://doi.org/10.5796/electrochemistry.83.605 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHiroshimaJapan

Personalised recommendations