Network Formation Conditions Control Water Drop Adhesion for VK100 and a Model Pt-Cured Silicone

  • Jennie B. Lumen
  • Rebecca M. Jarrell
  • Sithara S. Nair
  • Chenyu Wang
  • Ashraf M. Kayesh
  • Kenneth J. Wynne


Unexpected wetting behavior is reported for silicone elastomers platinum cured at 37 °C in water or saline. These conditions were prompted as a way to mimic cure under physiologically relevant conditions for VK100, a Pt-cured silicone used for vertebral augmentation. Water contact angles (CAs) were determined by the drop addition/withdrawal method. Network formation in air, water, or saline gave high advancing CAs (θA). However, compared to 74° for air cure, network formation in water (56°) or saline (46°) gave low receding CAs (θR). Thus, water drop adhesion to VK100 and a model Pt-cured silicone depends on whether network formation is carried out in water or saline (“sticky”) or in air (“slippery”). For cure in water or saline, autoxidation (Si-H ➔ Si-OH) and near-surface entrapment of cross-linking chains containing –Si-OH are proposed to account for low receding CAs. The origin of the low θR and high contact angle hysteresis (54–72°) is correlated with the theory of Johnson and Dettre by which a small area fraction of polar groups impedes retraction of a receding water drop. These results are of interest given the importance of polar interactions at interfaces that favor adhesion to bone and influence on biofouling, adhesion of proteins, and interactions with human cells.


Contact angles Platinum-cured silicones Cure Network formation PDMS 



J. Lumen thanks BONWRx LLC for a summer fellowship and materials. K.J.W. thanks the National Science Foundation, Division of Materials Research, Polymers Program (DMR-1206259) and Polymers/Biomaterials Programs (DMR-1608022), and the School of Engineering Foundation for the support of this research.


  1. 1.
    Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306CrossRefGoogle Scholar
  2. 2.
    Lien N, Hang M, Wang W, Tian Y, Wang L, McCarthy TJ, Chen W (2014) Simple and improved approaches to long-lasting, hydrophilic silicones derived from commercially available precursors. ACS Appl Mater Interfaces 6:22876CrossRefGoogle Scholar
  3. 3.
    Wang C, Nair SS, Veeravalli S, Moseh P, Wynne KJ (2016) Sticky or slippery wetting: network formation conditions can provide a one-way street for water flow on platinum-cured silicone. ACS Appl Mater Interfaces 8:14252CrossRefGoogle Scholar
  4. 4.
    Mittal KL (ed) (1978) ASTM special technical publication, vol. 640: adhesion measurement of thin films, thick films, and bulk coatings. ASTM, PhiladelphiaGoogle Scholar
  5. 5.
    Gao LC, McCarthy TJ (2009) Wetting 101 degrees. Langmuir 25:14105CrossRefGoogle Scholar
  6. 6.
    Seaton JP, Carmichael R (2008) Materials and apparatus for in-situ bone repair. WO2008039807A2 28ppGoogle Scholar
  7. 7.
    Seaton JP, Carmichael R (2009) Materials and apparatus for in-situ bone repair. WO2009064541A1 32ppGoogle Scholar
  8. 8.
    Patel SK, Malone S, Cohen C, Gillmor JR, Colby RH (1992) Elastic-modulus and equilibrium swelling of poly(dimethylsiloxane) networkS. Macromolecules 25:5241CrossRefGoogle Scholar
  9. 9.
    Perutz S, Kramer EJ, Baney J, Hui CY (1997) Adhesion between hydrolyzed surfaces of poly(dimethylsiloxane) networks. Macromolecules 30:7964CrossRefGoogle Scholar
  10. 10.
    Uilk JM, Mera AE, Fox RB, Wynne KJ (2003) Hydrosilation-cured poly(dimethylsiloxane) networks: intrinsic contact angles via dynamic contact angle analysis. Macromolecules 36:3689CrossRefGoogle Scholar
  11. 11.
    Seaton JP, Trebing LM (2007) Injectable compositions containing curable polysiloxane elastic materials for repair and reconstruction of intervertebral discs and other reconstructive surgery. WO2007062082A2 24ppGoogle Scholar
  12. 12.
    Magonov SN, Elings V, Whangbo MH (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375:L385CrossRefGoogle Scholar
  13. 13.
    Gasbarrini A, Ghermandi R, Girolami M, Boriani S, Akman YE (2017) Elastoplasty as a promising novel technique: vertebral augmentation with an elastic silicone-based polymer. Acta Orthop Traumatol Turc 51:209–214CrossRefGoogle Scholar
  14. 14.
    Mackel MJ, Sanchez S, Kornfield JA (2007) Humidity-dependent wetting properties of high hysteresis surfaces. Langmuir 23:3CrossRefGoogle Scholar
  15. 15.
    Kennan JJ, Peters YA, Swarthout DE, Owen MJ, Namkanisorn A, Chaudhury MK (1997) Effect of saline exposure on the surface and bulk properties of medical grade silicone elastomers. J Biomed Mater Res 36:487CrossRefGoogle Scholar
  16. 16.
    Di Terlizzi R, Platt S (2006) The function, composition and analysis of cerebrospinal fluid in companion animals: part I – function and composition. Vet J 172:422CrossRefGoogle Scholar
  17. 17.
    Spector R, Snodgrass SR, Johanson CE (2015) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57CrossRefGoogle Scholar
  18. 18.
    Hooshfar S, Basiri B, Bartlett MG (2016) Development of a surrogate matrix for cerebral spinal fluid for liquid chromatography/mass spectrometry based analytical methods. Rapid Commun Mass Spectrom 30:854CrossRefGoogle Scholar
  19. 19.
    Heller W, Cheng MH, Greene BW (1966) Surface tension measurements by means of microcone tensiometer. J Colloid Interface Sci 22:179CrossRefGoogle Scholar
  20. 20.
    Chanda M (2000) Advanced polymer chemistry. Marcel Dekker, New YorkGoogle Scholar
  21. 21.
    Owen MJ (1981) Why silicones behave funny. Chem Tech 11:288Google Scholar
  22. 22.
    Owen MJ (1990) In: Zeigler JM, Fearon FW (eds) Siloxane surface activity, vol 224. American Chemical Society, Washington, DCGoogle Scholar
  23. 23.
    Bartell FE, Ray BR (1952) Wetting characteristics of cellulose derivatives. I. Contact angles formed by water and by organic liquids. J Am Chem Soc 74:778CrossRefGoogle Scholar
  24. 24.
    Johnson RE Jr, Dettre RH (1964) Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem 68:1744CrossRefGoogle Scholar
  25. 25.
    Dettre RH, Johnson RE (1965) Contact angle hysteresis. 4. Contact angle measurements on heterogeneous surfaces. J Phys Chem 69:1507CrossRefGoogle Scholar
  26. 26.
    Pease DM (1945) The significance of the contact angle in relation to the solid surface. J Phys Chem 49:107CrossRefGoogle Scholar
  27. 27.
    Erli HJ, Marx R, Paar O, Niethard FU, Weber M, Wirtz DC (2003) Surface pretreatments for medical application of adhesion. Biomed Eng Online 2:15CrossRefGoogle Scholar
  28. 28.
    Hawkins ML, Fay F, Rehel K, Linossier I, Grunlan MA (2014) Bacteria and diatom resistance of silicones modified with PEO-silane amphiphiles. Biofouling 30:247CrossRefGoogle Scholar
  29. 29.
    Wenning BM, Martinelli E, Mieszkin S, Finlay JA, Fischer D, Callow JA, Callow ME, Leonardi AK, Ober CK, Galli G (2017) Model amphiphilic block copolymers with tailored molecular weight and composition in PDMS-based films to limit soft biofouling. ACS Appl Mater Interfaces 9:16505CrossRefGoogle Scholar
  30. 30.
    Elwing H, Welin S, Askendal A, Nilsson U, Lundstrom I (1987) A wettability gradient-method for studies of macromolecular interactions at the liquid solid interface. J Colloid Interface Sci 119:203CrossRefGoogle Scholar
  31. 31.
    Lin SY, Parasuraman VR, Mekuria SL, Peng S, Tsai HC, Hsiue GH (2017) Plasma initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone elastomer surfaces to enhance bio(hemo)compatibility. Surf Coat Technol 315:342CrossRefGoogle Scholar
  32. 32.
    Liu PS, Chen Q, Yuan B, Chen MZ, Wu SS, Lin SC, Shen J (2013) Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Mater Sci Eng C-Mater Biol Appl 33:3865CrossRefGoogle Scholar
  33. 33.
    Pedraza E, Brady AC, Fraker CA, Stabler CL (2013) Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. J Biomater Sci-Polym Ed 24:1041CrossRefGoogle Scholar
  34. 34.
    Kurian P, Kennedy JP (2002) Novel tricontinuous hydrophilic-lipophilic-oxyphilic membranes: synthesis and characterization. J Polym Sci A Polym Chem 40(9):1209–1217CrossRefGoogle Scholar
  35. 35.
    Simpson TRE, Tabatabaian Z, Jeynes C, Parbhoo B, Keddie JL (2004) Influence of interfaces on the rates of crosslinking in poly(dimethyl siloxane) coatings. J Polym Sci A Polym Chem 42(6):1421–1431CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jennie B. Lumen
    • 1
  • Rebecca M. Jarrell
    • 1
  • Sithara S. Nair
    • 1
  • Chenyu Wang
    • 1
  • Ashraf M. Kayesh
    • 1
  • Kenneth J. Wynne
    • 1
  1. 1.Chemical and Life Science EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations