Design of Element Blocks for Photoresponsive Organosiloxane-Based Materials

  • Sufang Guo
  • Kazuyuki Kuroda
  • Atsushi ShimojimaEmail author


In this chapter, preparation, structures, and photoresponsive properties of various azobenzene–siloxane hybrid nanomaterials based on the design of element blocks are described. Hydrolysis and polycondensation reactions accompanied by self-assembly of different types of azobenzene-functionalized alkoxysilane precursors yield hybrids with ordered mesostructures. Lamellar films show reversible d-spacing changes and macroscopic bending–unbending motion by partial transcis photoisomerization of the azobenzene groups. Further, incorporation of a cage oligosiloxane into the precursor leads to the formation of cylindrical assemblies, in which efficient photoisomerization of azobenzene is achieved. These findings will contribute to the creation of novel photoresponsive materials.


Photoresponsive materials Azobenzene Siloxane Self-assembly Sol–gel processing 


  1. 1.
    Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54CrossRefGoogle Scholar
  2. 2.
    Yagai S, Kitamura A (2008) Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev 37:1520–1529CrossRefGoogle Scholar
  3. 3.
    Bandarab HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41:1809–1825CrossRefGoogle Scholar
  4. 4.
    White TJ, Tabiryan NV, Serak SV et al (2008) A high frequency photodriven polymer oscillator. Soft Matter 4:1796–1798CrossRefGoogle Scholar
  5. 5.
    Yamada M, Kondo M, Mamiya J et al (2008) Photomobile polymer materials: toward light-driven motors. Angew Chem Int Ed 47:4986–4988CrossRefGoogle Scholar
  6. 6.
    Yamada M, Kondo M, Miyasato R et al (2009) Photomobile polymer materials: various three-dimensional movements. J Mater Chem 19:60–62CrossRefGoogle Scholar
  7. 7.
    Gelebart AH, Mulder DJ, Varga M et al (2017) Making waves in a photoactive polymer film. Nature 546(29):632–647CrossRefGoogle Scholar
  8. 8.
    Hoffmann F, Cornelius M, Morell J et al (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251CrossRefGoogle Scholar
  9. 9.
    Liu N, Chen Z, Dunphy DR et al (2003) Photoresponsive nanocomposites formed by self-assembly of an azobenzene-modified silane. Angew Chem Int Ed 42:1731–1734CrossRefGoogle Scholar
  10. 10.
    Liu N, Dunphy DR, Atanassov P et al (2003) Photoregulation of mass transport through a photoresponsive azobenzene modified nanoporous membrane. Nano Lett 4(4):551–554CrossRefGoogle Scholar
  11. 11.
    Angelos S, Choi E, Vogtle F et al (2007) Photo-driven exclusion of molecules from mesostructured silica nanoparticles. J Phys Chem C 111(18):6589–6592CrossRefGoogle Scholar
  12. 12.
    Angelos S, Yang YW, Khashab NM et al (2009) Dual controlled nanoparticles exhibiting AND logic. J Am Chem Soc 131(32):11344–11346CrossRefGoogle Scholar
  13. 13.
    Lu J, Choi E, Tamanoi F et al (2008) Light-activated nanoimpeller-controlled drug release in cancer cells. Small 4(4):421–426CrossRefGoogle Scholar
  14. 14.
    Alvaro M, Benitez M, Das D et al (2005) Reversible porosity changes in photoresponsive azobenzene-containing periodic mesoporous silicas. Chem Mater 17(20):4958–4964CrossRefGoogle Scholar
  15. 15.
    Besson E, Mehdi V, Lerner DA et al (2005) Photoresponsive ordered hybrid materials containing a bridged azobenzene group. J Mater Chem 15:803–809CrossRefGoogle Scholar
  16. 16.
    Shimojima A, Kuroda K (2006) Designed synthesis of nanostructured siloxane–organic hybrids from amphiphilic silicon-based precursors. Chem Rec 6:53–63CrossRefGoogle Scholar
  17. 17.
    Chemtob A, Ni L, Croutxé-Barghorn C et al (2014) Ordered hybrids from template-free organosilane self-assembly. Chem Eur J 20:1790–1806CrossRefGoogle Scholar
  18. 18.
    Liu N, Yu K, Smarsly B et al (2002) Self-directed assembly of photoactive hybrid silicates derived from an azobenzene-bridged silsesquioxane. J Am Chem Soc 124(49):14540–14541CrossRefGoogle Scholar
  19. 19.
    Guo S, Sugawara-Narutaki A, Okubo T et al (2013) Synthesis of ordered photoresponsive azobenzene–siloxane hybrids by self-assembly. J Mater Chem C 1:6989–6995CrossRefGoogle Scholar
  20. 20.
    Guo S, Chaikittisilp W, Okubo T et al (2014) Azobenzene–siloxane hybrids with lamellar structures from bridged-type alkoxysilyl precursors. RSC Adv 4:25319–25325CrossRefGoogle Scholar
  21. 21.
    Ogawa M, Ishii T, Miyamoto N et al (2001) Photocontrol of the basal spacing of azobenzene-magadiite intercalation compound. Adv Mater 13(14):1107–1109CrossRefGoogle Scholar
  22. 22.
    Nabetani Y, Takamura H, Masui D et al (2011) A photoactivated artificial muscle model unit: reversible, photoinduced sliding of nanosheets. J Am Chem Soc 133:17130–17133CrossRefGoogle Scholar
  23. 23.
    Guo S, Matsukawa K, Miyata T et al (2015) Photoinduced bending of self-assembled azobenzene–siloxane hybrid. J Am Chem Soc 137:15434–15440CrossRefGoogle Scholar
  24. 24.
    Guo S, Sasaki J, Tsujiuchi S et al (2017) Role of cubic siloxane cages in mesostructure formation and photoisomerization of azobenzene–siloxane hybrid. Chem Lett 46(8):1237–1239CrossRefGoogle Scholar
  25. 25.
    Ide T, Ozama Y, Matsui K (2011) Photochemistry of azobenezene in sol-gel systems. J Non-Cryst Solids 357:100–104CrossRefGoogle Scholar
  26. 26.
    Ueda M, Kim HB, Ichimura K (1994) Photochemical and thermal isomerization of azobenzene derivatives in sol-gel bulk materials. Chem Mater 6(10):1771–1775CrossRefGoogle Scholar
  27. 27.
    Ueda M, Kim HB, Ikeda T et al (1993) Photoisomerizability of an azobenzene covalently attached to silica-gel matrix. J Non-Cryst Solids 163:125–132CrossRefGoogle Scholar
  28. 28.
    Guo S, Okubo T, Kuroda K et al (2016) A photoresponsive azobenzene-bridged cubic silsesquioxane network. J Sol-Gel Sci Technol 79:262–269CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sufang Guo
    • 1
    • 3
  • Kazuyuki Kuroda
    • 1
    • 2
  • Atsushi Shimojima
    • 2
    Email author
  1. 1.Kagami Memorial Research Institute for Materials Science and TechnologyWaseda UniversityShinjuku-kuJapan
  2. 2.Department of Applied ChemistryWaseda UniversityShinjuku-kuJapan
  3. 3.Present address: School of Materials Science and TechnologyChina University of Geosciences, Haidian DistrictBeijingChina

Personalised recommendations