Advertisement

Thermodynamic Activation of Charge Transfer in Anionic Redox Process for Li-Ion Batteries

  • Biao Li
  • Ning Jiang
  • Weifeng Huang
  • Huijun Yan
  • Yuxuan Zuo
  • Dingguo Xia
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Rechargeable lithium-ion batteries with high energy densities are indispensable for the further development of portable electronics and electric vehicles. Traditional cathode electrodes based on materials such as LiCoO2, LiFePO4, and LiMn2O4 operate by reversible intercalation and extraction with restricted numbers of lithium ions during charge and discharge, respectively, resulting in limited specific capacities that cannot meet the demands of high-energy-density batteries.

References

  1. 1.
    Choi NS, Chen Z, Freunberger SA, et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed. 2012;51(40):9994–10024.CrossRefGoogle Scholar
  2. 2.
    Chen J. Recent progress in advanced materials for lithium ion batteries. Materials. 2013;6(1):156–83.CrossRefGoogle Scholar
  3. 3.
    Whittingham MS. Ultimate limits to intercalation reactions for lithium batteries. Chem Rev. 2014;114(23):11414–43.CrossRefGoogle Scholar
  4. 4.
    Tarascon JM. Is lithium the new gold? Nat Chem. 2010;2(6):510.CrossRefGoogle Scholar
  5. 5.
    Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587–603.CrossRefGoogle Scholar
  6. 6.
    Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries. Adv Mater. 2009;21(45):4593–607.CrossRefGoogle Scholar
  7. 7.
    Yabuuchi N, Takeuchi M, Nakayama M, et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc Natl Acad Sci. 2015;112(25):7650–5.CrossRefGoogle Scholar
  8. 8.
    Yabuuchi N, Takeuchi M, Komaba S, et al. Synthesis and electrochemical properties of Li1.3Nb0.3V0.4O2 as a positive electrode material for rechargeable lithium batteries. Chem Commun. 2016;52(10):2051–4.CrossRefGoogle Scholar
  9. 9.
    Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater. 2013;12(9):827–35.CrossRefGoogle Scholar
  10. 10.
    Sathiya M, Ramesha K, Rousse G, et al. High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem Mater. 2013;25(7):1121–31.CrossRefGoogle Scholar
  11. 11.
    Sathiya M, Abakumov AM, Foix D, et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater. 2015;14(2):230–8.CrossRefGoogle Scholar
  12. 12.
    Ma J, Gao Y, Wang Z, et al. Structural and electrochemical stability of Li-rich layer structured Li2MoO3 in air. J Power Sources. 2014;258:314–20.CrossRefGoogle Scholar
  13. 13.
    Ma J, Zhou Y-N, Gao Y, et al. Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials. Chem Mater. 2014;26(10):3256–62.CrossRefGoogle Scholar
  14. 14.
    Lee J, Urban A, Li X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science. 2014;343(6170):519–22.CrossRefGoogle Scholar
  15. 15.
    Lee J, Seo D-H, Balasubramanian M, et al. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy Environ Sci. 2015;8(11):3255–65.CrossRefGoogle Scholar
  16. 16.
    Wang R, Li X, Liu L, et al. A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li1.25Nb0.25Mn0.5O2. Electrochem Commun. 2015;60:70–3.CrossRefGoogle Scholar
  17. 17.
    Van der Ven A, Aydinol MK, Ceder G, et al. First-principles investigation of phase stability in LixCoO2. Phys Rev B. 1998;58(6):2975–87.CrossRefGoogle Scholar
  18. 18.
    Montoro LA, Abbate M, Rosolen JM. Changes in the electronic structure of chemically deintercalated LiCoO2. Electrochem Solid-State Lett. 2000;3(9):410–2.CrossRefGoogle Scholar
  19. 19.
    Mesilov VV, Galakhov VR, Gizhevskii BA, et al. Charge states of cobalt ions in nanostructured lithium cobaltite: X-ray absorption and photoelectron spectra. Phys Solid State. 2013;55(5):943–8.CrossRefGoogle Scholar
  20. 20.
    Yukinori K, Yang-Soo K, IsaoTanaka, et al. Changes in chemical bondings by Li deintercalation in LiMO2 (M=Cr, V, Co and Ni). Jpn J Appl Phys. 1999;38(4R):2024.Google Scholar
  21. 21.
    Graetz J, Hightower A, Ahn CC, et al. Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. J Phys Chem B. 2002;106(6):1286–9.CrossRefGoogle Scholar
  22. 22.
    Wolverton C, Zunger A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys Rev Lett. 1998;81(3):606–9.CrossRefGoogle Scholar
  23. 23.
    Yoon WS, Kim KB, Kim MG, et al. Oxygen contribution on Li-ion intercalation−deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Phys Chem B. 2002;106(10):2526–32.CrossRefGoogle Scholar
  24. 24.
    Mizokawa T, Wakisaka Y, Sudayama T, et al. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phys Rev Lett. 2013;111(5):056404.CrossRefGoogle Scholar
  25. 25.
    Wang Z, Wang Z, Peng W, et al. Structure and electrochemical performance of LiCoO2 cathode material in different voltage ranges. Ionics. 2014;20(11):1525–34.CrossRefGoogle Scholar
  26. 26.
    Chen C-H, Hwang B-J, Chen C-Y, et al. Soft X-ray absorption spectroscopy studies on the chemically delithiated commercial LiCoO2 cathode material. J Power Sources. 2007;174(2):938–43.CrossRefGoogle Scholar
  27. 27.
    Dahéron L, Dedryvère R, Martinez H, et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem Mater. 2008;20(2):583–90.CrossRefGoogle Scholar
  28. 28.
    Aydinol MK, Kohan AF, Ceder G, et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B. 1997;56(3):1354–65.CrossRefGoogle Scholar
  29. 29.
    Shang SL, Wang Y, Mei ZG, et al. Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe Co, and Ni): a comparative first-principles study. J Mater Chem. 2012;22(3):1142–9.CrossRefGoogle Scholar
  30. 30.
    Xiao R, Li H, Chen L. Density functional investigation on Li2MnO3. Chem Mater. 2012;24(21):4242–51.CrossRefGoogle Scholar
  31. 31.
    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–67.CrossRefGoogle Scholar
  32. 32.
    Sakuda A, Takeuchi T, Okamura K, et al. Rock-salt-type lithium metal sulphides as novel positive-electrode materials. Sci Rep. 2014;4:4883.CrossRefGoogle Scholar
  33. 33.
    Saubanère M, McCalla E, Tarascon JM, et al. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci. 2016;9(3):984–91.CrossRefGoogle Scholar
  34. 34.
    Seo DH, Lee J, Urban A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem. 2016;8(7):692–7.CrossRefGoogle Scholar
  35. 35.
    Sawatzky GA, Allen JW. Magnitude and origin of the band gap in NiO. Phys Rev Lett. 1984;53(24):2339–42.CrossRefGoogle Scholar
  36. 36.
    Zaanen J, Sawatzky GA, Allen JW. Band gaps and electronic structure of transition-metal compounds. Phys Rev Lett. 1985;55(4):418–21.CrossRefGoogle Scholar
  37. 37.
    van Elp J, Wieland JL, Eskes H, Kuiper P, Sawatzky GA, de Groot FMF, Turner TS. Electronic structure of CoO, Li-doped CoO, and LiCoO2. Phys Rev B. 1991;44:6090.CrossRefGoogle Scholar
  38. 38.
    Menetrier M, Saadoune I, Levasseur S, et al. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li nmr study. J Mater Chem. 1999;9(5):1135–40.CrossRefGoogle Scholar
  39. 39.
    Yabuuchi N, Nakayama M, Takeuchi M, Komaba S, Hashimoto Y, Mukai T, Shiiba H, Sato K, Kobayashi Y, Nakao A, Yonemura M, Yamanaka K, Mitsuhara K, Ohta T. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat Commun. 2016;7:13814.CrossRefGoogle Scholar
  40. 40.
    Ogasawara Y, Hibino M, Kobayashi H, Kudo T, Asakura D, Nanba Y, Hosono E, Nagamura N, Kitada Y, Honma I, Oshima M, Okuoka S-I, Ono H, Yonehara K, Sumida Y, Mizuno N. Charge/discharge mechanism of a new Co-doped Li2O cathode material for a rechargeable sealed lithium-peroxide battery analyzed by X-ray absorption spectroscopy. J Power Sources. 2015;287:220.CrossRefGoogle Scholar
  41. 41.
    Zhu Z, Kushima A, Yin Z, Qi L, Amine K, Lu J, Li J. Anion-redox nanolithia cathodes for Li-ion batteries. Nat Energy. 2016;1:16111.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Biao Li
    • 1
  • Ning Jiang
    • 1
  • Weifeng Huang
    • 1
  • Huijun Yan
    • 1
  • Yuxuan Zuo
    • 1
  • Dingguo Xia
    • 1
  1. 1.Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of EngineeringPeking UniversityBeijingP. R. China

Personalised recommendations