Tuning the Reversibility of Oxygen Redox in Lithium-Rich Layered Oxides

  • Biao Li
  • Huijun Yan
  • Yuxuan Zuo
  • Dingguo XiaEmail author
Part of the Springer Theses book series (Springer Theses)


The fast development of electrical vehicle market proposes high-energy storage requirements for lithium-ion batteries.


  1. 1.
    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–67.CrossRefGoogle Scholar
  2. 2.
    Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104(10):4271–302.CrossRefGoogle Scholar
  3. 3.
    Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater. 2001;13(12–13):943–56.CrossRefGoogle Scholar
  4. 4.
    Thackeray MM, Johnson CS, Vaughey JT, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem. 2005;15(23):2257.CrossRefGoogle Scholar
  5. 5.
    Thackeray MM, Kang S-H, Johnson CS, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112.CrossRefGoogle Scholar
  6. 6.
    Bettge M, Li Y, Gallagher K, et al. Voltage fade of layered oxides: its measurement and impact on energy density. J Electrochem Soc. 2013;160(11):A2046–55.CrossRefGoogle Scholar
  7. 7.
    Gallagher KG, Croy JR, Balasubramanian M, et al. Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem Commun. 2013;33:96–8.CrossRefGoogle Scholar
  8. 8.
    Yabuuchi N, Takeuchi M, Nakayama M, et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc Natl Acad Sci. 2015;112(25):7650–5.CrossRefGoogle Scholar
  9. 9.
    Yabuuchi N, Takeuchi M, Komaba S, et al. Synthesis and electrochemical properties of Li1.3Nb0.3V0.4O2 as a positive electrode material for rechargeable lithium batteries. Chem Commun. 2016;52(10):2051–4.CrossRefGoogle Scholar
  10. 10.
    Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater. 2013;12(9):827–35.CrossRefGoogle Scholar
  11. 11.
    Sathiya M, Ramesha K, Rousse G, et al. High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem Mater. 2013;25(7):1121–31.CrossRefGoogle Scholar
  12. 12.
    Sathiya M, Abakumov AM, Foix D, et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater. 2015;14(2):230–8.CrossRefGoogle Scholar
  13. 13.
    Ma J, Gao Y, Wang Z, et al. Structural and electrochemical stability of Li-rich layer structured Li2MoO3 in air. J Power Sources. 2014;258:314–20.CrossRefGoogle Scholar
  14. 14.
    Ma J, Zhou Y-N, Gao Y, et al. Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials. Chem Mater. 2014;26(10):3256–62.CrossRefGoogle Scholar
  15. 15.
    Lee J, Urban A, Li X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science. 2014;343(6170):519–22.CrossRefGoogle Scholar
  16. 16.
    Lee J, Seo D-H, Balasubramanian M, et al. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy Environ Sci. 2015;8(11):3255–65.CrossRefGoogle Scholar
  17. 17.
    Wang R, Li X, Liu L, et al. A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li1.25Nb0.25Mn0.5O2. Electrochem Commun. 2015;60:70–3.CrossRefGoogle Scholar
  18. 18.
    Saubanère M, McCalla E, Tarascon JM, et al. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci. 2016;9(3):984–91.CrossRefGoogle Scholar
  19. 19.
    Xie Y, Saubanère M, Doublet ML. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ Sci. 2017;10(1):266–74.CrossRefGoogle Scholar
  20. 20.
    Wolverton C, Zunger A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys Rev Lett. 1998;81(3):606–9.CrossRefGoogle Scholar
  21. 21.
    Yoon WS, Kim KB, Kim MG, et al. Oxygen contribution on Li-ion intercalation − deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Phys Chem B. 2002;106(10):2526–32.CrossRefGoogle Scholar
  22. 22.
    Mizokawa T, Wakisaka Y, Sudayama T, et al. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phys Rev Lett. 2013;111(5):056404.CrossRefGoogle Scholar
  23. 23.
    Chen D, Yang D, Wang Q, et al. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res. 2006;45(12):4110–6.CrossRefGoogle Scholar
  24. 24.
    Subramanian A, Wang H-W. Effects of boron doping in TiO2 nanotubes and the performance of dye-sensitized solar cells. Appl Surf Sc.i. 2012;258(17):6479–84.CrossRefGoogle Scholar
  25. 25.
    Li B, Yan H, Ma J, et al. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv Func Mater. 2014;24(32):5112–8.CrossRefGoogle Scholar
  26. 26.
    Alcántara R, Lavela P, Tirado JL, et al. Structure and electrochemical properties of boron-doped LiCoO2. J Solid State Chem. 1997;134(2):265–73.CrossRefGoogle Scholar
  27. 27.
    Fleet ME, Muthupari S. Coordination of boron in alkali borosilicate glasses using XANES. J Non-Cryst Solids. 1999;255(2–3):233–41.CrossRefGoogle Scholar
  28. 28.
    Fleet ME, Muthupari S. Boron K-edge XANES of borate and borosilicate minerals. American Mineralogist. 2000;85(7–8):1009–21.CrossRefGoogle Scholar
  29. 29.
    Liu X, Wang D, Liu G, et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nature Commun. 2013;4:2568.CrossRefGoogle Scholar
  30. 30.
    Li B, Shao R, Yan H, et al. Understanding the stability for Li-rich layered oxide Li2RuO3 cathode. Adv Func Mater. 2016;26(9):1330–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of EngineeringPeking UniversityBeijingP. R. China

Personalised recommendations