Anionic Redox and Stability Mechanism of Li-Rich Layered Oxides

  • Biao Li
  • Ruiwen Shao
  • Huijun Yan
  • Li An
  • Bin Zhang
  • Hang Wei
  • Jin Ma
  • Dingguo XiaEmail author
  • Xiaodong Han
Part of the Springer Theses book series (Springer Theses)


Lithium-ion batteries have been increasingly urged with high-energy density and long cycle life to meet the increasing requirements for portable electronics, use of renewable energy, and electric vehicles.


  1. 1.
    Padhi AK, Nanjundaswamy KS, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc. 1997;144(5):1609–13.CrossRefGoogle Scholar
  2. 2.
    Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3̅m) for 4 v secondary lithium cells. J Electrochem Soc. 1993;140(7):1862–70.CrossRefGoogle Scholar
  3. 3.
    Gu M, Belharouak I, Zheng J, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano. 2013;7(1):760–7.CrossRefGoogle Scholar
  4. 4.
    Croy JR, Gallagher KG, Balasubramanian M, et al. Examining hysteresis in composite xLi2MnO3·(1–x)LiMO2 cathode structures. J Phys Chem C. 2013;117(13):6525–36.CrossRefGoogle Scholar
  5. 5.
    Mohanty D, Li J, Abraham DP, et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater. 2014;26(21):6272–80.CrossRefGoogle Scholar
  6. 6.
    Lyu Y, Zhao N, Hu E, et al. Probing reversible multielectron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0–4.8 V. Chem Mater. 2015;27(15):5238–52.CrossRefGoogle Scholar
  7. 7.
    Xu Y, Hu E, Yang F, et al. Structural integrity—searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques. Nano Energy. 2016;1(28):164–71.CrossRefGoogle Scholar
  8. 8.
    Zheng J, Gu M, Genc A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014;14(5):2628–35.CrossRefGoogle Scholar
  9. 9.
    Dogan F, Long BR, Croy JR, et al. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. J Am Chem Soc. 2015;137(6):2328–35.CrossRefGoogle Scholar
  10. 10.
    Koga H, Croguennec L, Ménétrier M, et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J Phys Chem C. 2014;118(11):5700–9.CrossRefGoogle Scholar
  11. 11.
    Koga H, Croguennec L, Ménétrier M, et al. Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J Power Sources. 2013;236:250–8.CrossRefGoogle Scholar
  12. 12.
    Luo K, Roberts MR, Hao R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem. 2016;8(7):684–91.CrossRefGoogle Scholar
  13. 13.
    Muhammad S, Kim H, Kim Y, et al. Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries. Nano Energy. 2016;21:172–84.CrossRefGoogle Scholar
  14. 14.
    Sun YK, Lee MJ, Yoon CS, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater. 2012;24(9):1192–6.CrossRefGoogle Scholar
  15. 15.
    Wu F, Li N, Su Y, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater. 2013;25(27):3722–6.CrossRefGoogle Scholar
  16. 16.
    Qiao Q Q, Zhang H Z, Li G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with LiMnPO4 as the cathode for lithium-ion batteries. J Mate Chem A. 2013;1(17):5262.Google Scholar
  17. 17.
    Liu W, Oh P, Liu X, et al. Countering voltage decay and capacity fading of lithium-rich cathode material at 60 & #xB0;C by hybrid surface protection layers. Adv Energy Mater. 2015;5(13):1500274.CrossRefGoogle Scholar
  18. 18.
    Zhang X, Belharouak I, Li L, et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater. 2013;3(10):1299–1307.Google Scholar
  19. 19.
    Pei Y, Xu C-Y, Xiao Y-C, et al. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv Functional Mater. 2017;1604349.Google Scholar
  20. 20.
    Zhao Y, Liu J, Wang S, et al. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: Implications for enhanced electrochemical performance. Adv Functional Mate. 2016;26(26):4760–7.CrossRefGoogle Scholar
  21. 21.
    Zheng F, Yang C, Xiong X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed. 2015;127(44):1–6.Google Scholar
  22. 22.
    Bian X, Fu Q, Qiu H, et al. High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4Mn5O12 heterostructured cathode material coated with a lithium borate oxide glass layer. Chem Mater. 2015;27(16):5745–54.CrossRefGoogle Scholar
  23. 23.
    He W, Yuan D, Qian J, et al. Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J Mater Chem A. 2013;1(37):11397.Google Scholar
  24. 24.
    Zhang HZ, Qiao QQ, Li GR, et al. PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J Mater Chem A. 2014;2(20):7454.CrossRefGoogle Scholar
  25. 25.
    Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater. 2013;12(9):827–35.CrossRefGoogle Scholar
  26. 26.
    Sathiya M, Abakumov AM, Foix D, et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater. 2015;14(2):230–8.CrossRefGoogle Scholar
  27. 27.
    Jung S-K, Gwon H, Hong J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater. 2014;4(1):1300787.Google Scholar
  28. 28.
    Graetz J, Hightower A, Ahn CC, et al. Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. Journal Phys Chem B. 2002;106(6):1286–9.CrossRefGoogle Scholar
  29. 29.
    Wolverton C, Zunger A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys Rev Lett. 1998;81(3):606–9.CrossRefGoogle Scholar
  30. 30.
    Aydinol MK, Kohan AF, Ceder G, et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B. 1997;56(3):1354–65.CrossRefGoogle Scholar
  31. 31.
    Yoon WS, Kim KB, Kim MG, et al. Oxygen contribution on Li-ion intercalation−deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Phys Chem B. 2002;106(10):2526–32.CrossRefGoogle Scholar
  32. 32.
    Uchimoto Y, Sawada H, Yao T. Changes in electronic structure by Li ion deintercalation in LiNiO2 from nickel L-edge and O K-edge XANES. J Power Sources. 2001;97–98:326–7.CrossRefGoogle Scholar
  33. 33.
    Yoon W-S, Balasubramanian M, Chung KY, et al. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xNi1/3Mn1/3Co1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J Am Chem Soc. 2005;127(49):17479–87.CrossRefGoogle Scholar
  34. 34.
    Oishi M, Fujimoto T, Takanashi Y, et al. Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure. J Power Sources. 2013;222:45–51.CrossRefGoogle Scholar
  35. 35.
    Van der Ven A, Aydinol MK, Ceder G, et al. First-principles investigation of phase stability in LixCoO2. Phys Rev B. 1998;58(6):2975–87.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Biao Li
    • 1
  • Ruiwen Shao
    • 2
  • Huijun Yan
    • 1
  • Li An
    • 1
  • Bin Zhang
    • 2
  • Hang Wei
    • 1
  • Jin Ma
    • 1
  • Dingguo Xia
    • 1
    Email author
  • Xiaodong Han
    • 2
  1. 1.Beijing Key Lab of Theory and Technology for Advanced Batteries Materials, College of EngineeringPeking UniversityBeijingP. R. China
  2. 2.Institute of Microstructure and Properties of Advanced MaterialsBeijing University of TechnologyBeijingP. R. China

Personalised recommendations