Polyanion-Modified Li-Rich Manganese-Based Layered Materials

  • Biao Li
  • Huijun Yan
  • Jin Ma
  • Pingrong Yu
  • Dingguo XiaEmail author
  • Weifeng Huang
  • Wangsheng Chu
  • Ziyu Wu
Part of the Springer Theses book series (Springer Theses)


Owing to the rapid development of portable electronics, electric vehicles, and energy storage devices, the demand for lithium-ion batteries (LIBs) with high energy density and long cycle life has spurred enormous research efforts to develop novel electrode materials with high performance.


  1. 1.
    Kang K, Meng YS, Breger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science. 2006;311(5763):977–80.CrossRefGoogle Scholar
  2. 2.
    Sun YK, Myung ST, Park BC, et al. High-energy cathode material for long-life and safe lithium batteries. Nat Mater. 2009;8(4):320–4.CrossRefGoogle Scholar
  3. 3.
    Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167–76.CrossRefGoogle Scholar
  4. 4.
    Shen C-H, Wang Q, Chen H-J, et al. In situ multitechnical investigation into capacity fading of high-voltage LiNi0.5Co0.2Mn0.3O2. ACS Appl Mater Interfaces. 2016;8(51):35323–35.CrossRefGoogle Scholar
  5. 5.
    Wei GZ, Lu X, Ke FS, et al. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater. 2010;22(39):4364–7.CrossRefGoogle Scholar
  6. 6.
    Yabuuchi N, Yoshii K, Myung ST, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc. 2011;133(12):4404–19.CrossRefGoogle Scholar
  7. 7.
    Lee Y, Kim MG, Cho J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material. Nano Lett. 2008;8(3):957–61.CrossRefGoogle Scholar
  8. 8.
    Kim MG, Jo M, Hong YS, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem Commun. 2009;2:218–20.CrossRefGoogle Scholar
  9. 9.
    Wang D, Belharouak I, Gallagher S, et al. Chemistry and electrochemistry of concentric ring cathode Li1.42Ni0.25Mn0.75O2+γ for lithium batteries. J Mater Chem. 2012;22(24):12039.CrossRefGoogle Scholar
  10. 10.
    Gu M, Belharouak I, Zheng J, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano. 2013;7(1):760–7.CrossRefGoogle Scholar
  11. 11.
    Zheng J, Gu M, Xiao J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 2013;13(8):3824–30.CrossRefGoogle Scholar
  12. 12.
    Sun YK, Lee MJ, Yoon CS, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater. 2012;24(9):1192–6.CrossRefGoogle Scholar
  13. 13.
    Wu F, Li N, Su Y, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater. 2013;25(27):3722–6.CrossRefGoogle Scholar
  14. 14.
    Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188–94.CrossRefGoogle Scholar
  15. 15.
    Li D, Bancroft GM, Fleet ME. B K-edge XANES of crystalline and amorphous inorganic materials. J Electron Spectros Relat Phenom. 1996;79:71–3.CrossRefGoogle Scholar
  16. 16.
    Fleet ME, Muthupari S. Coordination of boron in alkali borosilicate glasses using XANES. J Non-Cryst Solids. 1999;255(2–3):233–41.CrossRefGoogle Scholar
  17. 17.
    Fleet Michael E, Muthupari S American mineralogist, vol. 85. 2000. p. 1009.Google Scholar
  18. 18.
    Jarvis KA, Deng Z, Allard LF, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater. 2011;23(16):3614–21.CrossRefGoogle Scholar
  19. 19.
    Boulineau A, Simonin L, Colin JF, et al. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 2013;13(8):3857–63.CrossRefGoogle Scholar
  20. 20.
    Simmance K, Sankar G, Bell RG, et al. Tracking the formation of cobalt substituted AlPO4 using simultaneous in situ X-ray diffraction and X-ray absorption spectroscopy techniques. Phys Chem Chem Phys. 2010;12(3):559–62.CrossRefGoogle Scholar
  21. 21.
    Yamamoto T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole. X-Ray Spectrom. 2008;37(6):572–84.CrossRefGoogle Scholar
  22. 22.
    Wu ZY, Xian DC, Hu TD, et al. Quadrupolar transitions and medium-range-order effects in metalk-edge X-ray absorption spectra of 3d transition-metal compounds. Phys Rev B. 2004;70(3).Google Scholar
  23. 23.
    Qiao QQ, Zhang HZ, Li GR, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with LiMnPO4 as the cathode for lithium-ion batteries. J Mater Chem A. 2013;1(17):5262.Google Scholar
  24. 24.
    Ito A, Sato Y, Sanada T, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources. 2011;196(16):6828–34.CrossRefGoogle Scholar
  25. 25.
    Hy S, Su W-N, Chen J-M, et al. Soft X-ray absorption spectroscopic and raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries. J Phys Chem C. 2012;116(48):25242–7.CrossRefGoogle Scholar
  26. 26.
    Padhi AK, Nanjundaswamy KS, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc. 1997;144(5):1609–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Biao Li
    • 1
  • Huijun Yan
    • 1
  • Jin Ma
    • 1
  • Pingrong Yu
    • 1
  • Dingguo Xia
    • 1
    Email author
  • Weifeng Huang
    • 2
  • Wangsheng Chu
    • 2
  • Ziyu Wu
    • 2
  1. 1.Key Lab of Theory and Technology for Advanced Batteries Materials, College of EngineeringPeking UniversityBeijingPeople’s Republic of China
  2. 2.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations