Advertisement

Introduction

  • Biao Li
  • Dingguo XiaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The issues related to energy and environment are attracting more and more attentions with the proposing of sustainable development concept in twenty-first century. The exhausting of fossil fuels leads to energy crisis and environmental pollution, which generates a huge challenge for the persistent development of human society. Therefore, exploiting and utilizing new clean energy are of great significance in scientific research. As a crucial part of the energy storage materials, lithium-ion batteries play the most important role in the utilization of new energies, such as electric vehicles and large-scale energy storage. In China, the Ministry of Science and Technology issued New Energy Project for Electric Vehicle of National Key Research to promote the scientific research of power batteries, among which Li-ion battery is the predominant technology. Besides, the application of Li-ion battery in portable electronic devices, such as laptop, cell phone, and digital camera, is highly universal nowadays. Moreover, with the development of advance technologies like artificial intelligence, more and more mobile and intelligentialized electronic devices, e.g., drones, robots, and walking machine, lead to surged demand for Li-ion battery technologies. Hence, there is no doubt that developing Li-ion battery technology is meaningful for sustainable development in the future.

References

  1. 1.
    Whittingham MS. Electrical energy storage and intercalation chemistry. Science. 1976;192(4244):1126–7.CrossRefGoogle Scholar
  2. 2.
    Armand MB. In materials for advanced batteries. In: Edsmurphy DW, Broadhead J, Steele BCH, editors. Proceedings of nato symposium on materials for advanced batteries; 1980. p. 145–61 (plenum, New york).Google Scholar
  3. 3.
    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–67.CrossRefGoogle Scholar
  4. 4.
    Murphy DW, Di Salvo FJ, Carides JN, et al. Topochemical reactions of rutile related structures with lithium. Mater Res Bull. 1978;13(12):1395–402.CrossRefGoogle Scholar
  5. 5.
    Lazzari M, Scrosati B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J Electrochem Soc. 1980;127(3):773–4.CrossRefGoogle Scholar
  6. 6.
    Ceder G, Chiang YM, Sadoway DR, et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature. 1998;392(6677):694–6.CrossRefGoogle Scholar
  7. 7.
    Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188–94.CrossRefGoogle Scholar
  8. 8.
    Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496–9.CrossRefGoogle Scholar
  9. 9.
    Yan JM, Huang HZ, Zhang J, et al. A study of novel anode material CoS2 for lithium ion battery. J Power Sources. 2005;146(1–2):264–9.CrossRefGoogle Scholar
  10. 10.
    Peled E, Menachem C, Bar-Tow D, et al. Improved graphite anode for lithium-ion batteries chemically: bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc. 1996;143(1):L4–7.CrossRefGoogle Scholar
  11. 11.
    Dahn JR, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials. Science. 1995;270(5236):590.CrossRefGoogle Scholar
  12. 12.
    Li B, Xia D. Anonic redox in lithium rechargeable batteries (submitted).Google Scholar
  13. 13.
    Seo DH, Lee J, Urban A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem. 2016;8(7):692–7.CrossRefGoogle Scholar
  14. 14.
    Mizushima K, Jones PC, Wiseman PJ, et al. LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density. Mater Res Bull. 1980;15(6):783–9.CrossRefGoogle Scholar
  15. 15.
    Thackeray MM, David WIF, Bruce PG, et al. Lithium insertion into manganese spinels. Mater Res Bull. 1983;18(4):461–72.CrossRefGoogle Scholar
  16. 16.
    Julien C, Mauger A, Zaghib K, et al. Comparative issues of cathode materials for Li-ion batteries. Inorganics. 2014;2(1):132.CrossRefGoogle Scholar
  17. 17.
    Ohzuku T, Ueda A. Solid-state redox reactions of LiCoO2 (R3̅m) for 4 volt secondary lithium cells. J Electrochem Soc. 1994;141(11):2972–7.CrossRefGoogle Scholar
  18. 18.
    Reimers JN, Dahn JR. Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc. 1992;139(8):2091–7.CrossRefGoogle Scholar
  19. 19.
    Van der Ven A, Aydinol MK, Ceder G, et al. First-principles investigation of phase stability in LixCoO2. Phys Rev B. 1998;58(6):2975–87.CrossRefGoogle Scholar
  20. 20.
    Cho J, Kim YJ, Park B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater. 2000;12(12):3788–91.CrossRefGoogle Scholar
  21. 21.
    Kim B, Lee JG, Choi M, et al. Correlation between local strain and cycle-life performance of AlPO4-coated LiCoO2 cathodes. J Power Sources. 2004;126(1–2):190–2.CrossRefGoogle Scholar
  22. 22.
    Zou M, Yoshio M, Gopukumar S, et al. Synthesis of high-voltage (4.5 V) cycling doped LiCoO2 for use in lithium rechargeable cells. Chem Mater. 2003;15(25):4699–702.CrossRefGoogle Scholar
  23. 23.
    Nakai I, Takahashi K, Shiraishi Y, et al. Study of the jahn–teller distortion in LiNiO2, a cathode material in a rechargeable lithium battery, by in situ x-ray absorption fine structure analysis. J Solid State Chem. 1998;140(1):145–8.CrossRefGoogle Scholar
  24. 24.
    Montoro LA, Abbate M, Rosolen JM. Changes in the electronic structure of chemically deintercalated LiCoO2. Electrochem Solid-State Lett. 2000;3(9):410–2.CrossRefGoogle Scholar
  25. 25.
    Galakhov VR, Neumann M, Kellerman DG. Electronic structure of defective lithium cobaltites LixCoO2. Appl Phys A. 2009;94(3):497–500.CrossRefGoogle Scholar
  26. 26.
    Mesilov VV, Galakhov VR, Gizhevskii BA, et al. Charge states of cobalt ions in nanostructured lithium cobaltite: X-ray absorption and photoelectron spectra. Phys Solid State. 2013;55(5):943–8.CrossRefGoogle Scholar
  27. 27.
    Koyama Y, Kim Yang-Soo, IsaoTanaka, et al. Changes in chemical bondings by Li deintercalation in LiMO2 (M = Cr, V, Co and Ni). Jpn J Appl Phys. 1999;38(4R):2024.CrossRefGoogle Scholar
  28. 28.
    Graetz J, Hightower A, Ahn CC, et al. Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. J Phys Chem B. 2002;106(6):1286–9.CrossRefGoogle Scholar
  29. 29.
    Wolverton C, Zunger A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys Rev Lett. 1998;81(3):606–9.CrossRefGoogle Scholar
  30. 30.
    Aydinol MK, Kohan AF, Ceder G, et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B. 1997;56(3):1354–65.CrossRefGoogle Scholar
  31. 31.
    Seo DH, Urban A, Ceder G. Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides. Phys Rev B. 2015;92(11):115118.CrossRefGoogle Scholar
  32. 32.
    Yoon WS, Kim KB, Kim MG, et al. Oxygen contribution on Li-ion intercalation-deintercalation in LiAlyCo1−yO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Electrochem Soc. 2002;149(10):A1305–9.CrossRefGoogle Scholar
  33. 33.
    Yoon WS, Kim KB, Kim MG, et al. Oxygen contribution on Li-ion intercalation–deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Phys Chem B. 2002;106(10):2526–32.CrossRefGoogle Scholar
  34. 34.
    Mizokawa T, Wakisaka Y, Sudayama T, et al. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phys Rev Lett. 2013;111(5):056404.CrossRefGoogle Scholar
  35. 35.
    Klinser G, Topolovec S, Kren H, et al. Charging of lithium cobalt oxide battery cathodes studied by means of magnetometry. Solid State Ionics. 2016;293:64–71.CrossRefGoogle Scholar
  36. 36.
    van Elp J, Wieland JL, Eskes H, et al. Electronic structure of coo, Li-doped CoO, and LiCoO2. Phys Rev B. 1991;44(12):6090–103.CrossRefGoogle Scholar
  37. 37.
    Menetrier M, Saadoune I, Levasseur S, et al. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li nmr study. J Mater Chem. 1999;9(5):1135–40.CrossRefGoogle Scholar
  38. 38.
    Tarascon JM, Vaughan G, Chabre Y, et al. In situ structural and electrochemical study of Ni1−xCoxO2 metastable oxides prepared by soft chemistry. J Solid State Chem. 1999;147(1):410–20.CrossRefGoogle Scholar
  39. 39.
    Kim MG, Sung NE, Shin HJ, et al. Ni and oxygen K-edge XAS investigation into the chemical bonding for lithiation of LiyNi1−xAlxO2 cathode material. Electrochim Acta. 2004;50(2–3):501–4.CrossRefGoogle Scholar
  40. 40.
    Kuiper P, Kruizinga G, Ghijsen J, et al. Character of holes in LixNi1−xO and their magnetic behavior. Phys Rev Lett. 1989;62(2):221–4.CrossRefGoogle Scholar
  41. 41.
    Abbate M, de Groot FMF, Fuggle JC, et al. Soft-x-ray-absorption studies of the location of extra charges induced by substitution in controlled-valence materials. Phys Rev B. 1991;44(11):5419–22.CrossRefGoogle Scholar
  42. 42.
    van Elp J, Searle BG, Sawatzky GA, et al. Ligand hole induced symmetry mixing of d8 states in LixNi1−xO, as observed in Ni 2p x-ray absorption spectroscopy. Solid State Commun. 1991;80(1):67–71.CrossRefGoogle Scholar
  43. 43.
    Mackrodt WC, Harrison NM, Saunders VR, et al. Direct evidence of O(p) holes in Li-doped NiO from Hartree-Fock calculations. Chem Phys Lett. 1996;250(1):66–70.CrossRefGoogle Scholar
  44. 44.
    Chen H, Harding JH. Nature of the hole states in Li-doped NiO. Phys Rev B. 2012;85(11):115127.CrossRefGoogle Scholar
  45. 45.
    Uchimoto Y, Sawada H, Yao T. Changes in electronic structure by Li ion deintercalation in LiNiO2 from nickel L-edge and O K-edge XANES. J Power Sources. 2001;97–98:326–7.CrossRefGoogle Scholar
  46. 46.
    Yukinori K, Isao T, Yang S, et al. First principles study on factors determining battery voltages of LiMO2 (M = Ti–Ni). Jpn J Appl Phys. 1999;38(8R):4804.Google Scholar
  47. 47.
    Graetz J, Ahn CC, Yazami R, et al. An electron energy-loss spectrometry study of charge compensation in LiNi0.8Co0.2O2. J Phys Chem B. 2003;107(13):2887–91.CrossRefGoogle Scholar
  48. 48.
    Yoon W-S, Balasubramanian M, Yang X-Q, et al. Soft X-ray absorption spectroscopic study of a LiNi0.5Mn0.5O2 cathode during charge. J Electrochem Soc. 2004;151(2):A246–51.CrossRefGoogle Scholar
  49. 49.
    Miao S, Kocher M, Rez P, et al. Local electronic structure of layered LixNi0.5Mn0.5O2 and LixNi1/3Mn1/3Co1/3O2. J Phys Chem B. 2005;109(49):23473–9.CrossRefGoogle Scholar
  50. 50.
    Yoon W-S, Balasubramanian M, Chung KY, et al. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1−xNi1/3Mn1/3Co1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J Am Chem Soc. 2005;127(49):17479–87.CrossRefGoogle Scholar
  51. 51.
    Tsai YW, Lee JF, Liu DG, et al. In-situ X-ray absorption spectroscopy investigations of a layered LiNi0.65Co0.25Mn0.1O2 cathode material for rechargeable lithium batteries. J Mater Chem. 2004;14(6):958–65.CrossRefGoogle Scholar
  52. 52.
    Yoon W-S, Grey CP, Balasubramanian M, et al. Combined NMR and XAS study on local environments and electronic structures of electrochemically Li-ion deintercalated Li1−xCo1/3Ni1/3Mn1/3O2 electrode system. Electrochem Solid-State Lett. 2004;7(3):A53–5.CrossRefGoogle Scholar
  53. 53.
    Tsai YW, Hwang BJ, Ceder G, et al. In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of lini1/3co1/3mn1/3o2 cathode material during electrochemical cycling. Chem Mater. 2005;17(12):3191–9.CrossRefGoogle Scholar
  54. 54.
    Petersburg CF, Li Z, Chernova NA, et al. Oxygen and transition metal involvement in the charge compensation mechanism of LiNi1/3Mn1/3Co1/3O2 cathodes. J Mater Chem. 2012;22(37):19993–20000.CrossRefGoogle Scholar
  55. 55.
    Thackeray MM, Kang S-H, Johnson CS, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112–25.CrossRefGoogle Scholar
  56. 56.
    Robertson AD, Bruce PG. The origin of electrochemical activity in Li2MnO3. Chem Commun. 2002;23:2790–1.CrossRefGoogle Scholar
  57. 57.
    Robertson AD, Bruce PG. Mechanism of electrochemical activity in Li2MnO3. Chem Mater. 2003;15(10):1984–92.CrossRefGoogle Scholar
  58. 58.
    Croy JR, Park JS, Dogan F, et al. First-cycle evolution of local structure in electrochemically activated Li2MnO3. Chem Mater. 2014;26(24):7091–8.CrossRefGoogle Scholar
  59. 59.
    Tang W, Kanoh H, Yang X, et al. Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions. Chem Mater. 2000;12(11):3271–9.CrossRefGoogle Scholar
  60. 60.
    Paik Y, Grey CP, Johnson CS, et al. Lithium and deuterium nmr studies of acid-leached layered lithium manganese oxides. Chem Mater. 2002;14(12):5109–15.CrossRefGoogle Scholar
  61. 61.
    Venkatraman S, Manthiram A. Investigation of the possible incorporation of protons into oxide cathodes during chemical delithiation. J Solid State Chem. 2004;177(11):4244–50.CrossRefGoogle Scholar
  62. 62.
    Lubin F, Lecerf A, Broussely M, et al. Chemical lithium extraction from manganese oxides for lithium rechargeable batteries. J Power Sources. 1991;34(2):161–73.CrossRefGoogle Scholar
  63. 63.
    Benedek R, Thackeray MM, van de Walle A. Free energy for protonation reaction in lithium-ion battery cathode materials. Chem Mater. 2008;20(17):5485–90.CrossRefGoogle Scholar
  64. 64.
    Armstrong AR, Bruce PG. Layered LixMn1−yLiyO2 intercalation electrodes: synthesis, structure and electrochemistry. J Mater Chem. 2005;15(1):218–24.CrossRefGoogle Scholar
  65. 65.
    Francis Amalraj S, Markovsky B, Sharon D, et al. Study of the electrochemical behavior of the “inactive” Li2MnO3. Electrochim Acta. 2012;78:32–9.CrossRefGoogle Scholar
  66. 66.
    Hong Y-S, Park YJ, Wu X, et al. Synthesis and electrochemical properties of nanocrystalline Li[Ni0.20Li0.20Mn0.60]O2. Electrochem Solid-State Lett. 2003;6(8):A166–9.CrossRefGoogle Scholar
  67. 67.
    Hong Y-S, Park YJ, Ryu KS, et al. Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1−2x)/3Mn(2−x)/3]O2 prepared by a simple combustion method. J Mater Chem. 2004;14(9):1424–9.CrossRefGoogle Scholar
  68. 68.
    Koyama Y, Tanaka I, Nagao M, et al. First-principles study on lithium removal from Li2MnO3. J Power Sources. 2009;189(1):798–801.CrossRefGoogle Scholar
  69. 69.
    Xiao R, Li H, Chen L. Density functional investigation on Li2MnO3. Chem Mater. 2012;24(21):4242–51.CrossRefGoogle Scholar
  70. 70.
    Lee E, Persson KA. Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations. Adv Energy Mater. 2014;4(15):1400498.CrossRefGoogle Scholar
  71. 71.
    Chen H, Islam MS. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem Mater. 2016;28:6656.CrossRefGoogle Scholar
  72. 72.
    Oishi M, Yamanaka K, Watanabe I, et al. Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy. J Mater Chem A. 2016;4(23):9293–302.CrossRefGoogle Scholar
  73. 73.
    Lim J-M, Kim D, Lim Y-G, et al. The origins and mechanism of phase transformation in bulk Li2MnO3: First-principles calculations and experimental studies. J Mater Chem A. 2015;3(13):7066–76.CrossRefGoogle Scholar
  74. 74.
    Kang SH, Kempgens P, Greenbaum S, et al. Interpreting the structural and electrochemical complexity of 0.5 l Li2MnO3·0.5 LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem. 2007;17(20):2069–77.CrossRefGoogle Scholar
  75. 75.
    Lei CH, Bareño J, Wen JG, et al. Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy. J Power Sources. 2008;178(1):422–33.CrossRefGoogle Scholar
  76. 76.
    Bareno J, Lei CH, Wen JG, et al. Local structure of layered oxide electrode materials for lithium-ion batteries. Adv Mater. 2010;22(10):1122–7.CrossRefGoogle Scholar
  77. 77.
    Mohanty D, Huq A, Payzant EA, et al. Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: Insight into the crystal structure. Chem Mater. 2013;25(20):4064–70.CrossRefGoogle Scholar
  78. 78.
    Yu H, Ishikawa R, So YG, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew Chem Int Ed. 2013;52(23):5969–73.CrossRefGoogle Scholar
  79. 79.
    Boulineau A, Simonin L, Colin J-F, et al. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chem Mater. 2012;24(18):3558–66.CrossRefGoogle Scholar
  80. 80.
    Lu Z, Beaulieu LY, Donaberger RA, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J Electrochem Soc. 2002;149(6):A778.CrossRefGoogle Scholar
  81. 81.
    Jarvis KA, Deng Z, Allard LF, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater. 2011;23(16):3614–21.CrossRefGoogle Scholar
  82. 82.
    Shukla AK, Ramasse QM, Ophus C, et al. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides. Nat Commun. 2015;6:8711.CrossRefGoogle Scholar
  83. 83.
    Armstrong AR, Robertson AD, Bruce PG. Overcharging manganese oxides: extracting lithium beyond Mn4+. J Power Sources. 2005;146(1–2):275–80.CrossRefGoogle Scholar
  84. 84.
    Robertson AD, Bruce PG. Overcapacity of Li[NixLi1/3−2x/3Mn2/3−x/3]O2 electrodes. Electrochem Solid-State Lett. 2004;7(9):A294.CrossRefGoogle Scholar
  85. 85.
    Armstrong AR, Bruce PG. Electrochemistry beyond Mn4+ in LixMn1−yLiyO2. Electrochem Solid-State Lett. 2004;7(1):A1.CrossRefGoogle Scholar
  86. 86.
    Lanz P, Sommer H, Schulz-Dobrick M, et al. Oxygen release from high-energy xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co): electrochemical, differential electrochemical mass spectrometric, in situ pressure, and in situ temperature characterization. Electrochim Acta. 2013;93:114–9.CrossRefGoogle Scholar
  87. 87.
    Armstrong AR, Holzapfel M, Novák P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc. 2006;128(26):8694–8.CrossRefGoogle Scholar
  88. 88.
    Boulineau A, Simonin L, Colin JF, et al. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 2013;13(8):3857–63.CrossRefGoogle Scholar
  89. 89.
    Hy S, Su W-N, Chen J-M, et al. Soft x-ray absorption spectroscopic and raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries. J Phys Chem C. 2012;116(48):25242–7.CrossRefGoogle Scholar
  90. 90.
    Oishi M, Fujimoto T, Takanashi Y, et al. Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure. J Power Sources. 2013;222:45–51.CrossRefGoogle Scholar
  91. 91.
    Koga H, Croguennec L, Ménétrier M, et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J Phys Chem C. 2014;118(11):5700–9.CrossRefGoogle Scholar
  92. 92.
    Koga H, Croguennec L, Menetrier M, et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J Electrochem Soc. 2013;160(6):A786–92.CrossRefGoogle Scholar
  93. 93.
    Koga H, Croguennec L, Ménétrier M, et al. Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J Power Sources. 2013;236:250–8.CrossRefGoogle Scholar
  94. 94.
    Gu M, Belharouak I, Genc A, et al. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano Lett. 2012;12(10):5186–91.CrossRefGoogle Scholar
  95. 95.
    Luo K, Roberts MR, Hao R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem. 2016;8(7):684–91.CrossRefGoogle Scholar
  96. 96.
    Luo K, Roberts MR, Guerrini N, et al. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J Am Chem Soc. 2016;138:11211.CrossRefGoogle Scholar
  97. 97.
    Oishi M, Yogi C, Watanabe I, et al. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J Power Sources. 2015;276:89–94.CrossRefGoogle Scholar
  98. 98.
    Han S, Xia Y, Wei Z, et al. A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.54O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge–discharge. J Mater Chem A, 2015;3(22):11930–11939.Google Scholar
  99. 99.
    Saubanère M, McCalla E, Tarascon JM, et al. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci. 2016;9(3):984–91.CrossRefGoogle Scholar
  100. 100.
    Yabuuchi N, Takeuchi M, Nakayama M, et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc Natl Acad Sci. 2015;112(25):7650–5.CrossRefGoogle Scholar
  101. 101.
    Kim JS, Johnson CS, Thackeray MM. Layered xLiMO2·(1−x)Li2M′O3 electrodes for lithium batteries: a study of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3. Electrochem Commun. 2002;4(3):205–9.CrossRefGoogle Scholar
  102. 102.
    Johnson CS, Korte SD, Vaughey JT, et al. Structural and electrochemical analysis of layered compounds from Li2MnO3. J Power Sources. 1999;81–82:491–5.CrossRefGoogle Scholar
  103. 103.
    Johnson CS, Kim J-S, Jeremy Kropf A, et al. The role of Li2MO2 structures (M = metal ion) in the electrochemistry of xLiMn0.5Ni0.5O2·(1−x)Li2TiO3 electrodes for lithium-ion batteries. Electrochem Commun. 2002;4(6):492–8.CrossRefGoogle Scholar
  104. 104.
    Shigemura H, Tabuchi M, Sakaebe H, et al. Lithium extraction and insertion behavior of nanocrystalline Li2TiO3–LiFeO2 solid solution with cubic rock salt structure. J Electrochem Soc. 2003;150(5):A638.CrossRefGoogle Scholar
  105. 105.
    Tabuchi M, Nakashima A, Shigemura H, et al. Fine Li(4−x)/3Ti(2−2x)/3FexO2 (0.18 ≤ x≤0.67) powder with cubic rock-salt structure as a positive electrode material for rechargeable lithium batteries. J Mater Chem. 2003;13(7):1747.CrossRefGoogle Scholar
  106. 106.
    Glazier SL, Li J, Zhou J, et al. Characterization of disordered Li(1+x)Ti2xFe(1−3x)O2 as positive electrode materials in Li-ion batteries using percolation theory. Chem Mater. 2015;27(22):7751–6.CrossRefGoogle Scholar
  107. 107.
    Kanno R, Shirane T, Kawamoto Y, et al. Synthesis, structure, and electrochemical properties of a new lithium iron oxide, LiFeO2, with a corrugated layer structure. J Electrochem Soc. 1996;143(8):2435–42.CrossRefGoogle Scholar
  108. 108.
    Ma S, Noguchi H. Electrochemical properties of LiFe5O8–Li4Ti5O12 solid solution. J Electrochem Soc. 2001;148(6):A589.CrossRefGoogle Scholar
  109. 109.
    Zhang L, Noguchi H. Novel layered Li–Cr–Ti–O cathode materials related to the LiCrO2–Li2TiO3 solid solution. J Electrochem Soc. 2003;150(5):A601.CrossRefGoogle Scholar
  110. 110.
    Zhang L, Wang X, Noguchi H, et al. Electrochemical and ex situ XRD investigations on (1−x)LiNiO2·xLi2TiO3 (0.05 ≤ x ≤ 0.5). Electrochimia Acta 2004;49(20):3305–3311.Google Scholar
  111. 111.
    Huang S, Wilson BE, Wang B, et al. Y-doped Li8ZrO6: a Li-ion battery cathode material with high capacity. J Am Chem Soc. 2015;137(34):10992–1003.CrossRefGoogle Scholar
  112. 112.
    Yabuuchi N, Takeuchi M, Komaba S, et al. Synthesis and electrochemical properties of Li1.3Nb0.3V0.4O2 as a positive electrode material for rechargeable lithium batteries. Chem Commun. 2016;52(10):2051–4.CrossRefGoogle Scholar
  113. 113.
    Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater. 2013;12(9):827–35.CrossRefGoogle Scholar
  114. 114.
    Sathiya M, Ramesha K, Rousse G, et al. High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem Mater. 2013;25(7):1121–31.CrossRefGoogle Scholar
  115. 115.
    Sathiya M, Abakumov AM, Foix D, et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater. 2015;14(2):230–8.CrossRefGoogle Scholar
  116. 116.
    O’Malley MJ, Verweij H, Woodward PM. Structure and properties of ordered Li2IrO3 and Li2PtO3. J Solid State Chem. 2008;181(8):1803–9.CrossRefGoogle Scholar
  117. 117.
    McCalla E, Abakumov AM, Saubanère M, et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science. 2015;350(6267):1516–21.CrossRefGoogle Scholar
  118. 118.
    Paul E, Pearce AJP, Rousse G, et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode Li2IrO3. Nat Mater 2017.Google Scholar
  119. 119.
    James ACWP, Goodenough JB. Structure and bonding in Li2MoO3 and Li2−xMoO3 (0 ≤ x ≤ 1.7). J Solid State Chem. 1988;76(1):87–96.CrossRefGoogle Scholar
  120. 120.
    Ma J, Gao Y, Wang Z, et al. Structural and electrochemical stability of Li-rich layer structured Li2MoO3 in air. J Power Sources. 2014;258:314–20.CrossRefGoogle Scholar
  121. 121.
    Ma J, Zhou Y-N, Gao Y, et al. Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials. Chem Mater. 2014;26(10):3256–62.CrossRefGoogle Scholar
  122. 122.
    Lee J, Urban A, Li X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science. 2014;343(6170):519–22.CrossRefGoogle Scholar
  123. 123.
    Lee J, Seo D-H, Balasubramanian M, et al. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy Environ Sci. 2015;8(11):3255–65.CrossRefGoogle Scholar
  124. 124.
    Rouxel J. Comments about cationic-anionic redox competition in the solid state. The formation of anion associations in the solid state. Comments Inorg Chem. 1993;14(4):207–28.CrossRefGoogle Scholar
  125. 125.
    Shang SL, Wang Y, Mei ZG, et al. Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe Co, and Ni): a comparative first-principles study. J Mater Chem. 2012;22(3):1142–9.CrossRefGoogle Scholar
  126. 126.
    Wan Z, Yu Y, Zhang HF, et al. First-principles study of electronic, dynamical and thermodynamic properties of Li2TiO3. Eur Phys J B 2012;85(6).Google Scholar
  127. 127.
    Kobayashi H, Kanno R, Tabuchi M, et al. Structure and charge/discharge characteristics of new layered oxides: Li1.8Ru0.6Fe0.6O3 and Li2IrO3. J Power Sources. 1997;68(2):686–91.CrossRefGoogle Scholar
  128. 128.
    Mortemard de Boisse B, Liu G, Ma J, et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nat Commun. 2016;7:11397.CrossRefGoogle Scholar
  129. 129.
    Jung S-K, Gwon H, Hong J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 2014;4 (1):1300787.Google Scholar
  130. 130.
    Wei GZ, Lu X, Ke FS, et al. Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3NixMn2/3−x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater. 2010;22(39):4364–7.CrossRefGoogle Scholar
  131. 131.
    Li B, Yan H, Ma J, et al. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv Func Mater. 2014;24(32):5112–8.CrossRefGoogle Scholar
  132. 132.
    Yabuuchi N, Yoshii K, Myung ST, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc. 2011;133(12):4404–19.CrossRefGoogle Scholar
  133. 133.
    Yuge R, Toda A, Kuroshima S, et al. Charge compensation mechanism during cycles in Fe-containing Li2MnO3 cathode for high energy density and low-cost lithium-ion batteries. Electrochim Acta. 2016;189:166–74.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Key Lab of Theory and Technology for Advanced Batteries Materials, College of EngineeringPeking UniversityBeijingP. R. China

Personalised recommendations