Sleep Deprivation, Cognitive Functions, and Countermeasures

  • Usha Panjwani
  • Meetu Wadhwa
  • Koushik Ray
  • Krishna Kishore


Sleep is necessary for the execution of cognitive functions. Sleep disturbance causes cognitive impairment in humans as well as rodents. Sleep is essential for neurogenesis, synaptic plasticity, and hippocampus-based memory consolidation. This process is impaired by sleep deprivation and may involve multiple pathways. Hippocampus is an essential player in the brain, which is involved in the execution of various cognitive functions and maintains neurogenesis and synaptic processes. At the same time, it is also more vulnerable to stress. Caffeine and modafinil are recognized psychostimulants, known to improve sleep deprivation-induced cognitive function decline in humans as well as animals. Caffeine and modafinil are well-evaluated countermeasures against sleep deprivation-induced alterations in the neuronal cell proliferation and synaptic plasticity mechanism. The article describes the sleep deprivation-induced deficit in cognitive function, its molecular mechanism, and the effect of psychostimulant drugs, caffeine, and modafinil.


Sleep deprivation Cognition Caffeine Modafinil Neurogenesis Synaptic plasticity 



Arterial blood pressure


Adrenocorticotropic hormone


Brain-derived neurotrophic factor




Blood pressure


Cornu Ammonis




Contingent negative variation


Corticotropin-releasing hormone




Dentate gyrus


Entorhinal cortex


Event-related potential




Heart rate


Heart rate variability


Long-term depression


Long-term potentiation




Morris water maze


Novel object recognition test


Non-rapid eye movement


Rapid eye movement


Sleep deprivation


Subgranular zone


Subventricular zone


Wisconsin Card Sorting Test


  1. Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA (2010) Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. Eur J Neurosci 31(8):1368–1376. CrossRefPubMedGoogle Scholar
  2. Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA (2011) Sleep deprivation prevents stimulation-induced increases of levels of P-CREB and BDNF: protection by caffeine. Mol Cell Neurosci 46(4):742–751. CrossRefPubMedGoogle Scholar
  3. Alzoubi KH, Srivareerat M, Aleisa AM, Alkadhi KA (2013) Chronic caffeine treatment prevents stress-induced LTP impairment: the critical role of phosphorylated CaMKII and BDNF. J Mol Neurosci 49(1):11–20. CrossRefPubMedGoogle Scholar
  4. Bachmann V, Klein C, Bodenmann S, Schafer N, Berger W, Brugger P et al (2012) The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 35(3):335–344. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bonnet MH, Balkin TJ, Dinges DF, Roehrs T, Rogers NL, Wesensten NJ et al (2005) The use of stimulants to modify performance during sleep loss: a review by the sleep deprivation and stimulant task force of the American Academy of Sleep Medicine. Sleep 28(9):1163–1187CrossRefGoogle Scholar
  6. Chatterjee A, Ray K, Panjwani U, Thakur L, Anand JP (2012) Meditation as an intervention for cognitive disturbances following total sleep deprivation. Indian J Med Res 136(6):1031–1038PubMedPubMedCentralGoogle Scholar
  7. De Valck E, Cluydts R (2001) Slow-release caffeine as a countermeasure to driver sleepiness induced by partial sleep deprivation. J Sleep Res 10(3):203–209CrossRefGoogle Scholar
  8. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gronli J, Soule J, Bramham CR (2013) Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 7:224. CrossRefPubMedGoogle Scholar
  10. Kesslak JP, So V, Choi J, Cotman CW, Gomez-Pinilla F (1998) Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance? Behav Neurosci 112(4):1012–1019CrossRefGoogle Scholar
  11. Killgore WD, Rupp TL, Grugle NL, Reichardt RM, Lipizzi EL, Balkin TJ (2008) Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness. J Sleep Res 17(3):309–321. CrossRefPubMedGoogle Scholar
  12. Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H et al (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139(4):814–827. CrossRefPubMedGoogle Scholar
  13. Kochman LJ, Fornal CA, Jacobs BL (2009) Suppression of hippocampal cell proliferation by short-term stimulant drug administration in adult rats. Eur J Neurosci 29(11):2157–2165. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21. CrossRefPubMedGoogle Scholar
  15. Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9(9):3040–3057CrossRefGoogle Scholar
  16. Orzel-Gryglewska J (2010) Consequences of sleep deprivation. Int J Occup Med Environ Health 23(1):95–114. CrossRefPubMedGoogle Scholar
  17. Panjwani U, Ray K, Chatterjee A, Bhaumik S, Kumar S (2010) Electrophysiological correlates of cognition improve with nap during sleep deprivation. Eur J Appl Physiol 108(3):549–556CrossRefGoogle Scholar
  18. Pierard C, Liscia P, Philippin JN, Mons N, Lafon T, Chauveau F et al (2007) Modafinil restores memory performance and neural activity impaired by sleep deprivation in mice. Pharmacol Biochem Behav 88(1):55–63. CrossRefPubMedGoogle Scholar
  19. Rauchs G, Orban P, Schmidt C, Albouy G, Balteau E, Degueldre C et al (2008) Sleep modulates the neural substrates of both spatial and contextual memory consolidation. PLoS One 3(8):e2949. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ray K, Chatterjee A, Panjwani U, Kumar S, Sahu S, Ghosh S et al (2012) Modafinil improves event related potentials P300 and contingent negative variation after 24 h sleep deprivation. Life Sci 91(3–4):94–99CrossRefGoogle Scholar
  21. Rechtschaffen A (1998) Current perspectives on the function of sleep. Perspect Biol Med 41(3):359–390CrossRefGoogle Scholar
  22. Roman V, Van der Borght K, Leemburg SA, Van der Zee EA, Meerlo P (2005) Sleep restriction by forced activity reduces hippocampal cell proliferation. Brain Res 1065(1–2):53–59. CrossRefPubMedGoogle Scholar
  23. Sahu S, Kauser H, Ray K, Kishore K, Kumar S, Panjwani U (2013) Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus. Exp Neurol 248:470–481CrossRefGoogle Scholar
  24. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21CrossRefGoogle Scholar
  25. Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437(7063):1264–1271CrossRefGoogle Scholar
  26. Tadavarty R, Kaan TK, Sastry BR (2009) Long-term depression of excitatory synaptic transmission in rat hippocampal CA1 neurons following sleep-deprivation. Exp Neurol 216(1):239–242. CrossRefPubMedGoogle Scholar
  27. Taliaz D, Stall N, Dar DE, Zangen A (2010) Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry 15(1):80–92. CrossRefPubMedGoogle Scholar
  28. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L et al (2016) Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev 74(Pt B):321–329CrossRefGoogle Scholar
  29. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1):12–34. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tripathi S, Jha SK (2016) Short-term total sleep deprivation alters delay-conditioned memory in the rat. Behav Neurosci 130(3):325–335CrossRefGoogle Scholar
  31. Tsanov M, Lyons DG, Barlow S, Gonzalez Reyes RE, O’Mara SM (2010) The psychostimulant modafinil facilitates water maze performance and augments synaptic potentiation in dentate gyrus. Neuropharmacology 59(1–2):9–19. CrossRefPubMedGoogle Scholar
  32. Wadhwa M, Sahu S, Kumari P, Kauser H, Ray K, Panjwani U (2015) Caffeine and modafinil given during 48 h sleep deprivation modulate object recognition memory and synaptic proteins in the hippocampus of the rat. Behav Brain Res 294:95–101CrossRefGoogle Scholar
  33. Wesensten NJ, Belenky G, Thorne DR, Kautz MA, Balkin TJ (2004) Modafinil vs. caffeine: effects on fatigue during sleep deprivation. Aviat Space Environ Med 75(6):520–525PubMedGoogle Scholar
  34. Yoo SS, Hu PT, Gujar N, Jolesz FA, Walker MP (2007) A deficit in the ability to form new human memories without sleep. Nat Neurosci 10(3):385–392CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Usha Panjwani
    • 1
  • Meetu Wadhwa
    • 1
  • Koushik Ray
    • 1
  • Krishna Kishore
    • 1
  1. 1.Neurophysiology Division, Defence Institute of Physiology & Allied Sciences (DIPAS)Defence Research and Development Organization (DRDO)DelhiIndia

Personalised recommendations