Advertisement

Technological Options for Biogenic Waste and Residues—Overview of Current Solutions and Developments

  • A. SchüchEmail author
  • G. Morscheck
  • Michael Nelles
Conference paper

Abstract

Globally, it is becoming increasingly clear that organic waste can not only cause massive environmental impacts, including climate-harming emissions by illegal dumping, burning or even untreated landfilling but also is a valuable resource for energy generation and recycling. The transition from waste disposal to a circular economy is in progress. In many countries, its separate collection and high-quality utilization were recognized as an opportunity. The separate collection of biowaste is mandatory for all European countries (EU Waste Directive 2008/98/EC). Due to its decades of tradition, Germany is on a comparatively good level in the separate biowaste collection, although the collection rate varies widely. The arising amount of biogenic waste and residues is dependent on the population, living conditions, and agricultural production. There is still unused potential available, for example, one-third percent of the technical potential of waste biomass in Germany. The proper treatment and the highest possible use of this waste are of particular importance because of their environmentally harmful emissions. Moreover, no competition for food and feed exists, different from energy crops. In the field of high-quality recycling in the form of combined biogas production and subsequent production of compost, there is also room for improvement in Germany. Biogenic waste and raw materials are to be used even more efficiently in the ongoing bioeconomy. Current research all over the world focuses on integrated biorefinery concepts, the production of basic chemicals, specialized fibers, chars based on biowaste. In the future, energy-efficient biowaste treatment plants are not only intended to safely fulfill their disposal and recycling function, but also to supply electricity demand orientated and to link sectors such as the transport and heat sector in an optimal way. At the same time, biowaste treatment facilities are faced with increasing impurity content, the demographic change, the profitability, and the acceptance of the recycling products. The implementation of high-quality recycling of organic waste is often hindered by low environmental awareness and/or lack of refinancing systems.

Keywords

Biowaste Potential Treatment Valorization 

Notes

Acknowledgements

The presented work is part of the running research project “Network Stability with Wind and Bioenergy, Storage and Loads (Netz-Stabil)”, ESF/14-BM-A55-0021/16. The authors are grateful to the Excellence Initiative of the Federal State Mecklenburg-Western Pomerania funded by the European Social Fund for Germany (ESF) for the support of the research.

References

  1. 1.
    Afolabi OOD, Sohail M, Thomas CLP (2017) Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste. Energy 134:74–89.  https://doi.org/10.1016/j.energy.2017.06.010CrossRefGoogle Scholar
  2. 2.
    Aichinger P, Kuprian M, Probst M, Insam H, Ebner C (2015) Demand-driven energy supply from stored biowaste for biomethanisation. Bioresour technol 194:389–393.  https://doi.org/10.1016/j.biortech.2015.06.147CrossRefGoogle Scholar
  3. 3.
    Alibardi L, Ragazzi M (2016) Biowaste to fuel–what’s leading research and applications? Waste Manag (New York, N.Y.) 47:1–2.  https://doi.org/10.1016/j.wasman.2015.11.034CrossRefGoogle Scholar
  4. 4.
    Angelini S, Cerruti P, Immirzi B, Santagata G, Scarinzi G, Malinconico M (2014) From biowaste to bioresource. Effect of a lignocellulosic filler on the properties of poly(3-hydroxybutyrate). Int J Biol Macromol 71:163–173.  https://doi.org/10.1016/j.ijbiomac.2014.07.038CrossRefGoogle Scholar
  5. 5.
    Angelini S, Cerruti P, Immirzi B, Scarinzi G, Malinconico M (2016) Acid-insoluble lignin and holocellulose from a lignocellulosic biowaste. Bio-fillers in poly(3-hydroxybutyrate). Eur Polymer J 76:63–76.  https://doi.org/10.1016/j.eurpolymj.2016.01.024CrossRefGoogle Scholar
  6. 6.
    Bachmann S, Wentzel S, Eichler-Löbermann B (2011) Codigested dairy slurry as a phosphorus and nitrogen source for Zea mays L. and Amaranthus cruentus L. Z. Pflanzenernähr. Bodenk. 174(6):908–915.  https://doi.org/10.1002/jpln.201000383CrossRefGoogle Scholar
  7. 7.
    Bastidas-Oyanedel J, Bonk F, Thomsen MH, Schmidt JE (2015) Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol 14(3):473–498.  https://doi.org/10.1007/s11157-015-9369-3CrossRefGoogle Scholar
  8. 8.
    Bernad-Beltrán D, Simó A, Bovea MD (2014) Attitude towards the incorporation of the selective collection of biowaste in a municipal solid waste management system. A case study. Waste Manag (New York, NY) 34(12):2434–2444.  https://doi.org/10.1016/j.wasman.2014.08.023CrossRefGoogle Scholar
  9. 9.
    Bonk F, Bastidas-Oyanedel J, Schmidt JE (2015) Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation–Economic and energy assessment. Waste Manag (New York, NY) 40:82–91.  https://doi.org/10.1016/j.wasman.2015.03.008CrossRefGoogle Scholar
  10. 10.
    Brosowski A, Thrän D, Mantau U, Mahro B, Erdmann G, Adler P et al (2016) A review of biomass potential and current utilisation—status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 95:257–272.  https://doi.org/10.1016/j.biombioe.2016.10.017CrossRefGoogle Scholar
  11. 11.
    Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sustain Energy Rev 70:793–804.  https://doi.org/10.1016/j.rser.2016.11.260CrossRefGoogle Scholar
  12. 12.
    Cimpan C, Rothmann M, Hamelin L, Wenzel H (2015) Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection. J Environ Manag 157:69–83.  https://doi.org/10.1016/j.jenvman.2015.04.008CrossRefGoogle Scholar
  13. 13.
    de Clercq D, Wen Z, Fan F (2017) Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in China and implications for national policy. J Environ Manag 189:115–124.  https://doi.org/10.1016/j.jenvman.2016.12.030CrossRefGoogle Scholar
  14. 14.
    Colón J, Cadena E, Colazo AB, Quirós R, Sánchez A, Font X, Artola A (2015) Toward the implementation of new regional biowaste management plans. Environmental assessment of different waste management scenarios in Catalonia. Resour Conserv Recycl 95:143–155.  https://doi.org/10.1016/j.resconrec.2014.12.012CrossRefGoogle Scholar
  15. 15.
    Demichelis F, Pleissner D, Fiore S, Mariano S, Gutiérrez IMN, Schneider R, Venus J (2017) Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresour Technol 241:508–516.  https://doi.org/10.1016/j.biortech.2017.05.174CrossRefGoogle Scholar
  16. 16.
    Demirbas MF, Balat M, Balat H (2011) Biowastes-to-biofuels. Energy Convers Manag 52(4):1815–1828.  https://doi.org/10.1016/j.enconman.2010.10.041CrossRefGoogle Scholar
  17. 17.
    Ding L, Cheng J, Qiao D, Yue L, Li Y-Y, Zhou J, Cen K (2017) Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. Bioresour Technol 241:491–499.  https://doi.org/10.1016/j.biortech.2017.05.114CrossRefGoogle Scholar
  18. 18.
    Dreschke G, Probst M, Walter A, Pümpel T, Walde J, Insam H (2015) Lactic acid and methane. Improved exploitation of biowaste potential. Bioresour Technol 176:47–55.  https://doi.org/10.1016/j.biortech.2014.10.136CrossRefGoogle Scholar
  19. 19.
    Engler N, Scholwin F, Sutter R, Nelles M (2015) Performance enhancement of biogas digesters by post-treatment and recirculation of digestate. Forte Village_S. Margherita di Pula (CA)—Italy (Symposium proceedings (DVD), sardinia_2015, 15th international waste management and landfill symposium, 5–9 October 2015), 11 pGoogle Scholar
  20. 20.
    European Commission (ed.) (2014) End-of-waste criteria for biodegradable waste. Subjected to Biological Treatment (compost & digestate). Joint Research Centre. Publications Office of the European Union (Technical Proposals. JRC Scientific and Policy Reports), Luxembourg. Available online at http://jrc.es/EURdoc/JRC87124.pdf
  21. 21.
    Fava F, Totaro G, Diels L, Reis M, Duarte J, Carioca O, Ferreira B et al (2015) Biowaste biorefinery in Europe. Opportunities and research & development needs. New Biotechnol 32(1):100–108.  https://doi.org/10.1016/j.nbt.2013.11.003CrossRefGoogle Scholar
  22. 22.
    Francavilla M, Beneduce L, Gatta G, Montoneri E, Monteleone M, Mainero D (2016) Waste cleaning waste. Ammonia abatement in bio-waste anaerobic digestion by soluble substances isolated from bio-waste compost. Biochem Eng J 116:75–84.  https://doi.org/10.1016/j.bej.2016.02.015CrossRefGoogle Scholar
  23. 23.
    García A, Gandini A, Labidi J, Belgacem N, Bras J (2016) Industrial and crop wastes. A new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38.  https://doi.org/10.1016/j.indcrop.2016.06.004CrossRefGoogle Scholar
  24. 24.
    Gerdes C (2001) Pyrolyse von biomasse-abfall: thermochemische konversion mit dem hamburger-wirbelschichtverfahren dissertation, Universität Hamburg 2001. URN: urn:nbn:de:gbv:18-5563. http://ediss.sub.uni-hamburg.de/volltexte/2001/556/
  25. 25.
    Giovanis E (2015) Relationship between recycling rate and air pollution. Waste management in the state of Massachusetts. Waste Manag (New York, NY) 40:192–203.  https://doi.org/10.1016/j.wasman.2015.03.006CrossRefGoogle Scholar
  26. 26.
    Gomes AP, Matos MA, Carvalho IC (2008) Separate collection of the biodegradable fraction of MSW. An economic assessment. Waste Manag (New York, NY) 28(10):1711–1719.  https://doi.org/10.1016/j.wasman.2007.08.017CrossRefGoogle Scholar
  27. 27.
    Güereca LP, Gassó S, Baldasano JM, Jiménez-Guerrero P (2006) Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour Conserv Recycl 49(1):32–48.  https://doi.org/10.1016/j.resconrec.2006.03.009CrossRefGoogle Scholar
  28. 28.
    Hidalgo D, Martín-Marroquín JM (2015) Biochemical methane potential of livestock and agri-food waste streams in the Castilla y León Region (Spain). Food Res Int 73:226–233.  https://doi.org/10.1016/j.foodres.2014.12.044CrossRefGoogle Scholar
  29. 29.
    Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29(4):225–257CrossRefGoogle Scholar
  30. 30.
    Hungría J, Gutiérrez MC, Siles JA, Martín MA (2017) Advantages and drawbacks of OFMSW and winery waste co-composting at pilot scale. J Cleaner Prod 164:1050–1057.  https://doi.org/10.1016/j.jclepro.2017.07.029CrossRefGoogle Scholar
  31. 31.
    Jaria G, Silva CPa, Ferreira CIA, Otero M, Calisto V (2017) Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents. An alternative waste management strategy. J Environ Manag 188:203–211.  https://doi.org/10.1016/j.jenvman.2016.12.004CrossRefGoogle Scholar
  32. 32.
    Jensen MB, Møller J, Mønster J, Scheutz C (2017) Quantification of greenhouse gas emissions from a biological waste treatment facility. Waste Manag (New York, NY).  https://doi.org/10.1016/j.wasman.2017.05.033CrossRefGoogle Scholar
  33. 33.
    Jimenez J, Lei H, Steyer J-P, Houot S, Patureau D (2017) Methane production and fertilizing value of organic waste. Organic matter characterization for a better prediction of valorization pathways. Bioresour Technol 241:1012–1021.  https://doi.org/10.1016/j.biortech.2017.05.176CrossRefGoogle Scholar
  34. 34.
    Kannan S, Gariepy Y, Raghavan GSV (2017) Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Waste Manag (New York, NY) 65:159–168.  https://doi.org/10.1016/j.wasman.2017.04.016CrossRefGoogle Scholar
  35. 35.
    Koutinas A, Alexandri M, Pateraki C, Vlysides A, Papapostolou H (2014) Development of an advanced biorefinery concept based on valorization of pulp and paper industry waste streams. New Biotechnol 31:S39.  https://doi.org/10.1016/j.nbt.2014.05.1700CrossRefGoogle Scholar
  36. 36.
    Lasardi K (2009) Implementing the Landfill Directive in Greece. Problems, perspectives and lessons to be learned. Geogr J 175(4):261–273.  https://doi.org/10.1111/j.1475-4959.2009.00342.xCrossRefGoogle Scholar
  37. 37.
    Lemke A, Schüch A, Morscheck G, Nelles M (2016) Impact of demographic change for bio-waste-management in German rural areas. In: Lasaridi K, Manio T (eds) ORBIT 2016 Abstract Book. Organic resources & biological treatment. 10th international conference on circular economy and organic waste. Heraklion, Crete, Greece, 48 (auf USB Stick 6 Seiten)Google Scholar
  38. 38.
    Lohri CR, Rajabu HM, Sweeney DJ, Zurbrügg C (2016) Char fuel production in developing countries—a review of urban biowaste carbonization. Renew Sustain Energy Rev 59:1514–1530.  https://doi.org/10.1016/j.rser.2016.01.088CrossRefGoogle Scholar
  39. 39.
    Malamis D, Bourka A, Stamatopoulou Ε, Moustakas K, Skiadi O, Loizidou M (2016) Study and assessment of segregated biowaste composting. The case study of Attica municipalities. J Environ Manag  https://doi.org/10.1016/j.jenvman.2016.09.070CrossRefGoogle Scholar
  40. 40.
    Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Manag (New York, NY) 30(6):983–994.  https://doi.org/10.1016/j.wasman.2010.02.023CrossRefGoogle Scholar
  41. 41.
    Micolucci F, Gottardo M, Cavinato C, Pavan P, Bolzonella D (2016) Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag (New York, NY) 48:227–235.  https://doi.org/10.1016/j.wasman.2015.09.031CrossRefGoogle Scholar
  42. 42.
    Mihai F-C, Ingrao C (2016) Assessment of biowaste losses through unsound waste management practices in rural areas and the role of home composting. J Cleaner Prod.  https://doi.org/10.1016/j.jclepro.2016.10.163CrossRefGoogle Scholar
  43. 43.
    Miltner M, Makaruk A, Harasek M (2017) Review on available biogas upgrading technologies and innovations towards advanced solutions. J Cleaner Prod 161:1329–1337.  https://doi.org/10.1016/j.jclepro.2017.06.045CrossRefGoogle Scholar
  44. 44.
    Nachtmann K (2017) LNG – künftige Herstellungs- und Anwendungsstrategien als alternativer Kraftstoff. Presentation at the C.A.R.M.E.N. e. V. – Symposium 2017 at the 11.07.2017 in Straubing, GermanyGoogle Scholar
  45. 45.
    Narzari R, Bordoloi N, Sarma B, Gogoi L, Gogoi N, Borkotoki B, Kataki R (2017) Fabrication of biochars obtained from valorization of biowaste and evaluation of its physicochemical properties. Bioresour Technol 242:324–328.  https://doi.org/10.1016/j.biortech.2017.04.050CrossRefGoogle Scholar
  46. 46.
    Nassour A, Elnaas A, Hemidat S, Nelles M (2016) Development of waste management in the Arab region. In: Waste management. TK, Neuruppin, pp 117–128. http://www.vivis.de/phocadownload/Download/2016_wm/2016_WM_117-128_Nassour.pdf
  47. 47.
    Nelles M, Grünes J, Morscheck G (2016) Waste management in Germany—development to a sustainable circular economy? Procedia Environ Sci 35:6–14.  https://doi.org/10.1016/j.proenv.2016.07.001CrossRefGoogle Scholar
  48. 48.
    Nelles M (2017) Kreislaufwirtschaft in Deutschland - internationales Vorbild oder nur noch 2. Liga? Editorial. Müll und Abfall 49(4):153Google Scholar
  49. 49.
    Nelles M, Brosowski A, Morscheck G, Schüch A (2016a) Biogenic waste and residues in Germany—amount, current utilisation and perspectives. In: Waste management and research: the journal of the international solid wastes and resource utilisation 2016, pp 1609–1615Google Scholar
  50. 50.
    Nelles M, Eickhoff I, Lemke A, Morscheck G, Nassour A, Schüch A, Zhou Y (2017) Disposal of biogenic fractions in the PR of China. In: Kuehle-Weidemeier M (ed) Waste-to-resources 2017. VII international symposium MBT and MRF. Proceedings. With assistance of K. Buescher, pp 179–195Google Scholar
  51. 51.
    Pachapur VL, Das RK, Brar SK, Le Bihan Y, Buelna G (2017) Valorization of crude glycerol and eggshell biowaste as media components for hydrogen production. A scale-up study using co-culture system. Bioresour Technol 225:386–394.  https://doi.org/10.1016/j.biortech.2016.11.114CrossRefGoogle Scholar
  52. 52.
    Park A, Kim YM, Kim JF, Lee PS, Cho YH, Park HS et al (2017) Biogas upgrading using membrane contactor process. Pressure-cascaded stripping configuration. Sep Purification Technol 183:358–365.  https://doi.org/10.1016/j.seppur.2017.03.006CrossRefGoogle Scholar
  53. 53.
    Piotrowski S, Carus M, Essel R (2015) Global bioeconomy in the conflict between biomass supply and demand. Hürth (7). In: Nova paper on bio-based economyGoogle Scholar
  54. 54.
    Pubule J, Blumberga A, Romagnoli F, Blumberga D (2015) Finding an optimal solution for biowaste management in the Baltic States. J Cleaner Prod 88:214–223.  https://doi.org/10.1016/j.jclepro.2014.04.053CrossRefGoogle Scholar
  55. 55.
    Quicker P, Neuerburg F, Noël Y, Huras A, Eyssen R, Seifert H et al (2017) Sachstand zu den alternativen Verfahren für die thermische Entsorgung von Abfällen. Projektnummer 29217 UBA-FB 002102: Umweltbundesamt (UBA TEXTE, 17)Google Scholar
  56. 56.
    Raussen T, Wagner J (2017) EEG 2017 in der abfallwirtschaftlichen Praxis—Chancen für Bio- und EEG 2017 in der abfallwirtschaftlichen Praxis—Chancen für Bio- und Grüngutverwertungsanlagen. Renewable Energy Sources Act (EEG 2017) in waste management practice—chances for organic recycling plants. In: Müll und Abfall, vol 7. pp 328–334. https://www.muellundabfall.de/MA.07.2017.328
  57. 57.
    Sartorius C, von Horn J, Tettenborn F (2012) Phosphorus recovery from wastewater—expert survey on present use and future potential. Water Environ Res 84(4).  https://doi.org/10.2175/106143012x13347678384440CrossRefGoogle Scholar
  58. 58.
    Schüch A, Morscheck G, Lemke A, Nelles M (2016) Bio-waste recycling in Germany—further challenges. Procedia Environ Sci 35:308–318.  https://doi.org/10.1016/j.proenv.2016.07.011CrossRefGoogle Scholar
  59. 59.
    Singhania RR, Patel AK, Christophe G, Fontanille P, Larroche C (2013) Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol 145:166–174.  https://doi.org/10.1016/j.biortech.2012.12.137CrossRefGoogle Scholar
  60. 60.
    Sortino O, Montoneri E, Patanè C, Rosato R, Tabasso S, Ginepro M (2014) Benefits for agriculture and the environment from urban waste. Sci Total Environ 487:443–451.  https://doi.org/10.1016/j.scitotenv.2014.04.027CrossRefGoogle Scholar
  61. 61.
    Sotiropoulos A, Vourka I, Erotokritou A, Novakovic J, Panaretou V, Vakalis S et al (2016) Combination of decentralized waste drying and SSF techniques for household biowaste minimization and ethanol production. Waste Manag (New York, NY) 52:353–359.  https://doi.org/10.1016/j.wasman.2016.03.047CrossRefGoogle Scholar
  62. 62.
    Sprafke J, Schüch A, Nelles M (2017) Possibilities of biogas enhancement by hydrogen addition as contribution to the energy transition. In: Conference proceedings of the international conference on solid waste management, 7IconSWM 2017. Proceedings under preparationGoogle Scholar
  63. 63.
    Thomsen M, Seghetta M, Mikkelsen MH, Gyldenkærne S, Becker T, Caro D, Frederiksen P (2017) Comparative life cycle assessment of biowaste to resource management systems—a Danish case study. J Cleaner Prod 142:4050–4058.  https://doi.org/10.1016/j.jclepro.2016.10.034CrossRefGoogle Scholar
  64. 64.
    Tock L, Schummer J (2017) Sustainable waste-to-value biogas plants for developing countries. Waste Manag (New York, NY) 64:1–2.  https://doi.org/10.1016/j.wasman.2017.05.014CrossRefGoogle Scholar
  65. 65.
    Vakalis S, Sotiropoulos A, Moustakas K, Malamis D, Vekkos K, Baratieri M (2016) Thermochemical valorization and characterization of household biowaste. J Environ Manag.  https://doi.org/10.1016/j.jenvman.2016.04.017CrossRefGoogle Scholar
  66. 66.
    Vassilev, N, Martos E, Mendes G, Martos V, Vassileva M (2013) Biochar of animal origin. A sustainable solution to the global problem of high-grade rock phosphate scarcity? J Sci Food Agric 93(8):1799–1804.  https://doi.org/10.1002/jsfa.6130CrossRefGoogle Scholar
  67. 67.
    Vogel T, Nelles M, Eichler-Löbermann B (2015) Phosphorus application with recycled products from municipal waste water to different crop species. Ecol Eng 83:466–475.  https://doi.org/10.1016/j.ecoleng.2015.06.044CrossRefGoogle Scholar
  68. 68.
    Vogel T, Kruse J, Siebers N, Nelles M, Eichler-Löbermann B (2017) Recycled products from municipal wastewater: composition and effects on phosphorus mobility in a sandy soil. J Environ Qual 1–9.  https://doi.org/10.2134/jeq2016.10.0392CrossRefGoogle Scholar
  69. 69.
    Wolfgang P-S (2012) Entwicklung eines sektoralen Ansatzes zum Aufbau von nachhaltigen Abfallwirtschaftssystemen in Entwicklungsländern vor dem Hintergrund von Klimawandel und Ressourcenverknappung. Darmstadt/Rostock: Dissertation am Lehrstuhl Abfall- und Stoffstromwirtschaft, Universität RostockGoogle Scholar
  70. 70.
    Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Biores Technol 101(3):1111–1114.  https://doi.org/10.1016/j.biortech.2009.09.010CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department Waste and Resource ManagementUniversity of RostockRostockGermany

Personalised recommendations