Management of Heavy Metal Polluted Soils: Perspective of Arbuscular Mycorrhizal Fungi

  • R. Krishnamoorthy
  • V. Venkatramanan
  • M. SenthilkumarEmail author
  • R. Anandham
  • K. Kumutha
  • Tongmin Sa


In recent years, intensive research have been initiated on remediation of metal polluted soil due to the public concerns on ecosystem deterioration. Plants are used as an effective tool in remediation of metal polluted soil. In natural ecosystem, plants are associated with soil microorganisms which plays an important role in enhancing plant growth in metal contaminated site and phytoremediation process. Among the microorganisms, arbuscular mycorrhizal fungi (AMF) contributes markedly in the phytoremediation process in metal contaminated site by enhancing plant stress tolerance and metal extraction from soil (phytoextraction) and immobilization of metals in soil (phytostabilization). This chapter deals with our study on the effect of heavy metal on AMF root colonization and diversity in heavy metal and metalloid contaminated sites. In addition, this chapter summarizes the mechanisms involved in AMF mediated phytoremediation of metal polluted soil. Potential prospects lies in revealing the mechanisms behind the tripartite interaction among plant species, AMF species and heavy metals for effective management of polluted soils.


Arbuscular mycorrhizal fungi Heavy metals Phytoextraction Phytostabilization 


  1. Allen, M. F., Swenson, W., Querejeta, J. I., Egerton-Warburton, L. M., & Treseder, K. K. (2003). Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology, 41, 271–303.CrossRefGoogle Scholar
  2. Audet, P., & Charest, C. (2007). Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environmental Pollution, 147, 609–614.CrossRefGoogle Scholar
  3. Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Contributions to Science, 2. Institut d’Estudis Catalans, Barcelona, pp. 333–344.Google Scholar
  4. Budel, B., Weber, B., Kuhl, M., Pfanz, H., Sultemeyer, D., & Wessels, D. (2004). Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: Bioalkalization causes chemical weathering in arid landscapes. Geobiology, 2, 261–268.CrossRefGoogle Scholar
  5. Chen, B., Xiao, X., Zhu, Y. G., Smith, F. A., Xie, Z. M., & Smith, S. E. (2007). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379, 226–234.CrossRefGoogle Scholar
  6. Cornejo, P., Meier, S., Borie, G., Rilig, M. C., & Borie, F. (2008). Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to cu and Zn sequestration. Science of the Total Environment, 406, 154–160.CrossRefGoogle Scholar
  7. Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.CrossRefGoogle Scholar
  8. Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany, 67, 6253–6265.CrossRefGoogle Scholar
  9. Frank, A. B. (1885). Uber di auf werzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdischeplize. Berichte der Deutschen Botanischen Gesellschaft, 3, 128–145.Google Scholar
  10. Garg, N., & Aggarwal, N. (2011). Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Mill sp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regulation, 66, 9–26.CrossRefGoogle Scholar
  11. Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534.Google Scholar
  12. Gillespie, A. W., Farrell, R. E., Walley, F. L., Ross, A. R., Leinweber, P., Eckhardt, K.-U., Regierd, T. Z., & Blyth, R. R. (2011). Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry, 43, 766–777.CrossRefGoogle Scholar
  13. Gohre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1122.CrossRefGoogle Scholar
  14. Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.CrossRefGoogle Scholar
  15. Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., & Gutierrez- Castorena, M. C. (2009). Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 161, 1288–1298.CrossRefGoogle Scholar
  16. Gonzalez-Chávez, M. C., Ortega-Larrocea, M. P., Carrillo-González, R., López-Meyer, M., Xoconostle-Cázares, B., Gomez, S. K., Harrison, M. J., Figueroa-López, A. M., & Maldonado-Mendoza, I. E. (2011). Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza. Fungal Biology, 115, 1197–1209.CrossRefGoogle Scholar
  17. Grcman, H., Vodnik, D., Velikonja-Bolta, S., & Lestan, D. (2003). Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of Environmental Quality, 32, 500–506.CrossRefGoogle Scholar
  18. Hassan, S. E. D., Boon, E., St-Arnaud, M., & Hijri, M. (2011). Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal polluted soils. Molecular Ecology, 20, 3469–3483.CrossRefGoogle Scholar
  19. Helgason, T., & Fitter, A. H. (2009). Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). Journal of Experimental Botany, 60, 2465–2480.CrossRefGoogle Scholar
  20. Hossain, M. A., Piyatida, P., Teixeira Da Silva, J. A., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 872875, 1–37. Scholar
  21. Janouskova, M., Pavlikova, D., Macek, T., & Vosatka, M. (2005). Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant and Soil, 272, 29–40.CrossRefGoogle Scholar
  22. Jia, X., Zhao, Y., Liu, T., Huang, S., & Chang, Y. (2016). Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Environmental Pollution, 218, 349–357.CrossRefGoogle Scholar
  23. Joner, E. J., Briones, R., & Leyval, C. (2000). Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil, 226, 227–234.CrossRefGoogle Scholar
  24. Kaldorf, M., Kuhn, A. J., Schroder, W. H., Hildebrandt, U., & Bothe, H. (1999). Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154, 718–728.CrossRefGoogle Scholar
  25. Krishnamoorthy, R. (2015). Exploring the biodiversity of arbuscular mycorrhizal fungi and associated endobacteria to improve maize growth under salt stress condition. Dissertation for the degree of doctor of philosophy, Chungbuk National University, South Korea.Google Scholar
  26. Krishnamoorthy, R., Kim, C. G., Subramanian, P., Kim, K. Y., Selvakumar, G., & Sa, T. M. (2015). Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One, 1–15. Scholar
  27. Krishnamoorthy, R., Venkateswaran, V., Senthilkumar, M., Anandham, R., Selvakumar, G., Kim, K. Y., Kang, Y. Y., & Sa, T. M. (2017). Potential microbiological approaches for the remediation of heavy metal-contaminated soils. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (pp. 341–366). Singapore: Springer.CrossRefGoogle Scholar
  28. Kroopnick, P. M. (1994). Vapor abatement cost analysis methodology for calculating life cycle costs for hydrocarbon vapor extracted during soil venting. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste (pp. 779–790). New York: Marcel Dekker.Google Scholar
  29. Kulakow, P. A., Schwab, A. P., & Banks, M. K. (2000). Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. International Journal of Phytoremediation, 2, 297–317.CrossRefGoogle Scholar
  30. Latef, A. A. A. (2013). Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. Journal of Agricultural Science and Technology, 15, 1437–1448.Google Scholar
  31. Leung, H. M., Ye, Z. H., & Wong, M. H. (2006). Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in as-contaminated soils. Environmental Pollution, 139, 1–8.CrossRefGoogle Scholar
  32. Malik, N., & Biswas, A. K. (2012). Role of higher plants in remediation of metal contaminated sites. Scientific Reviews and Chemical Communications, 2, 141–146.Google Scholar
  33. Martin, F., Perotto, S., & Bonfante, P. (2007). Mycorrhizal fungi: A fungal community at the interface between soil and roots. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface (pp. 201–236). New York: Marcel Dekker.Google Scholar
  34. Nichols, K. (2003). Characterization of glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi. PhD Dissertation, University of Maryland, College Park, Maryland.Google Scholar
  35. Nogueira, M. A., Nehls, U., Hampp, R., Poralla, K., & Cardoso, E. J. B. N. (2007). Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant and Soil, 298, 273–284.CrossRefGoogle Scholar
  36. Pawlowska, T. E., & Charvat, I. (2004). Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70, 6643–6649.CrossRefGoogle Scholar
  37. Pawlowska, T. E., Chaney, R. L., Chin, M., & Charvat, I. (2000). Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Applied and Environmental Microbiology, 66, 2526–2530.CrossRefGoogle Scholar
  38. Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574.CrossRefGoogle Scholar
  39. Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.CrossRefGoogle Scholar
  40. Renker, C., Blanke, V., & Buscot, F. (2005). Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environmental Pollution, 135, 255–266.CrossRefGoogle Scholar
  41. Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin and soil quality. Canadian Journal of Soil Science, 84, 355–363.CrossRefGoogle Scholar
  42. Rillig, M. C. (2005). A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49, 395–399.CrossRefGoogle Scholar
  43. Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41–53.CrossRefGoogle Scholar
  44. Rillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F., & Torn, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167–177.CrossRefGoogle Scholar
  45. Sanders, I., & Croll, D. (2010). Arbuscular mycorrhiza: The challenge to understand the genetics of the fungal partner. Annual Review of Genetics, 44, 271–292.CrossRefGoogle Scholar
  46. Sarma, H. (2011). Metal Hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4, 118–138.CrossRefGoogle Scholar
  47. Sieverding, E., & Oehl, F. (2006). Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. Journal of Applied Botany and Food Quality, 80, 69–81.Google Scholar
  48. Singh, H. (2006). Mycorrhizal fungi in rhizosophere bioremediation. In H. Singh (Ed.), Mycoremediation: Fungal bioremediation (pp. 533–572). New York: Wiley.CrossRefGoogle Scholar
  49. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Cambridge, London: Academic.Google Scholar
  50. Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., Trivedi, P. K., & Tandon, P. K. (2007). Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environmental Science & Technology, 41, 2930–2936.CrossRefGoogle Scholar
  51. Szczygłowska, M., Piekarska, A., Konieczka, P., & Namieśnik, J. (2011). Use of Brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, 12, 7760–7771.CrossRefGoogle Scholar
  52. Tonin, C., Vandenkoornhuyse, P., Joner, E. J., Straczek, J., & Leyval, C. (2001). Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza, 10, 161–168.CrossRefGoogle Scholar
  53. Turnau, K., & Mesjasz-Przybylowicz, J. (2003). Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza, 13, 185–190.CrossRefGoogle Scholar
  54. Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G., & Bonfante, P. (2006). Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in northern Italy. Environmental Microbiology, 8, 971–983.CrossRefGoogle Scholar
  55. Villiers, F., Ducruix, C., Hugouvieux, V., Ezan, N. J. E., Garin, J., Junot, C., & Bourguignon, J. (2011). Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics, 11, 1650–1663.CrossRefGoogle Scholar
  56. Vodnik, D., Grcman, H., Macek, I., Van, J., Elteren, J. T., & Kovacevic, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392, 130–136.CrossRefGoogle Scholar
  57. Weissenhorn, I., Leyval, C., & Berthelin, J. (1995). Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils, 19, 22–28.CrossRefGoogle Scholar
  58. Wilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12, 452–461.CrossRefGoogle Scholar
  59. Wright, S. F., Franke-Snyder, M., Morton, J. B., & Upadhyaya, A. (1996). Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181, 193–203.CrossRefGoogle Scholar
  60. Wu, Z. P., Mcgrouther, K., Huang, J. D., Wu, P. B., Wu, W. D., & Wang, H. L. (2014). Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: Field experiment. Soil Biology and Biochemistry, 68, 283–290.CrossRefGoogle Scholar
  61. Zarei, M., Konig, S., Hempel, S., Nekouei, M. K., Savaghebi, G., & Buscot, F. (2008). Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 156, 1277–1283.CrossRefGoogle Scholar
  62. Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., Jouzani, G. S., Nekouei, M. K., & Buscot, F. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765.CrossRefGoogle Scholar
  63. Zenk, M. H. (1996). Heavy metal detoxification in higher plants: A review. Gene, 179, 21–30.CrossRefGoogle Scholar
  64. Zhang, H., Xu, W., Guo, J., He, Z., & Ma, M. (2005). Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Science, 169, 1059–1065.CrossRefGoogle Scholar
  65. Zhang, J., Tang, X. L., He, X. H., & Liu, J. X. (2015). Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: Potential consequences for soil carbon accumulation. Soil Biology and Biochemistry, 83, 142–149.CrossRefGoogle Scholar
  66. Zhang, Y., Hu, J., Bai, J., Wang, J., Yin, R., Wang, J., & Lin, X. (2018a). Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Science of the Total Environment, 628–629, 282–290.CrossRefGoogle Scholar
  67. Zhang, J., Martinoia, E., & Lee, Y. (2018b). Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development. Plant and Cell Physiology, pcy006.
  68. Zhipeng, W., Weidong, W., Shenglu, Z., & Shaohua, W. (2016). Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in Pakchoi (Brassica chinensis L.). Pedosphere, 26, 13–26.CrossRefGoogle Scholar
  69. Zhu, X. F., Zheng, C., Hu, Y. T., Jiang, A., Liu, Y., Dong, N. Y., Yang, J. L., & Zheng, S. J. (2011). Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant, Cell & Environment, 34, 1055–1064.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. Krishnamoorthy
    • 1
  • V. Venkatramanan
    • 2
  • M. Senthilkumar
    • 3
    Email author
  • R. Anandham
    • 1
    • 3
  • K. Kumutha
    • 1
  • Tongmin Sa
    • 4
  1. 1.Department of Agricultural MicrobiologyAgricultural College and Research InstituteMaduraiIndia
  2. 2.School of Interdisciplinary and Transdisciplinary StudiesIndira Gandhi National Open UniversityNew DelhiIndia
  3. 3.Department of Agricultural MicrobiologyTamil Nadu Agricultural UniversityCoimbatoreIndia
  4. 4.Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations