Advertisement

Phosphorus Management in Agroecosytems and Role and Relevance of Microbes in Environmental Sustainability

  • Sagar Chhabra
Chapter

Abstract

Phosphorus (P) is an important macronutrient source for plant growth. However, it is a limiting mineral resource based on its availability in the environment and the form it is available to the plants. High amount of phosphorus use in soil is often considered to be non-productive to agriculture and can lead to mineral and heavy metal accumulation, soil leaching, surface run-off, and eutrophication in water bodies. This chapter reviews literature concerning P management practices in agriculture, the importance, role and relevance of microorganisms in P availability, environmental sustainability and the perspective of these microbes is discussed.

Keywords

Fungi Bacteria Phosphorus Environmental sustainability 

Notes

Acknowledgement

The author acknowledges the support provided by MicroGen Biotech Ltd, Ireland and its seed funding agency and research support team.

References

  1. Ahemad, M. (2015). Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review. Biotech, 5, 111–121.Google Scholar
  2. Arcand, M. M., & Schneider, K. D. (2006). Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: A review. Anais da Academia Brasileira de Ciências, 78, 791–807.CrossRefGoogle Scholar
  3. Armstrong, D. L. (1988). Role of phosphorus in plants: In better crops with plant Food pp 4-DI Armstrong. Atlanta: Potash and Phosphate Institute.Google Scholar
  4. Balemi, T., & Negisho, K. (2012). Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. Journal of Soil Science and Plant Nutrition, 12, 547–562.CrossRefGoogle Scholar
  5. Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2015). Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6, 1559.Google Scholar
  6. Charana Walpola, B., & Yoon, M. H. (2013). Phosphate solubilizing bacteria: Assessment of their effect on growth promotion and phosphorus uptake of mung bean (Vigna radiata [L.] R. Wilczek). Chilean Journal of Agricultural Research, 73(3), 275–281.CrossRefGoogle Scholar
  7. Chen, Y., Fan, J.-B., Du, L., Xu, H., Zhang, Q.-H., & He, Y.-Q. (2014). The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Applied Soil Ecology, 84, 235–244.CrossRefGoogle Scholar
  8. Chhabra, S., & Dowling, D. N. (2017). Endophyte-promoted nutrient acquisition: Phosphorus and iron. In Functional importance of the plant microbiome (pp. 21–42). Cham: Springer.CrossRefGoogle Scholar
  9. Chhabra, S., Brazil, D., Morrissey, J., Burke, J. I., O’Gara, F., & N Dowling, D. (2013). Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiology Open, 2, 717–724.Google Scholar
  10. Compton, J., Mallinson, D., Glenn, C. R., Filippelli, G., Föllmi, K., Shields, G., & Zanin, Y. (2000). Variations in the global phosphorus cycle. In Marine Authigenesis: From global to microbial (Vol. 66, pp. 21–33). United States: SEPM.CrossRefGoogle Scholar
  11. Crespo, J. M., Boiardi, J. L., & Luna, M. F. (2011). Mineral phosphate solubilization activity of gluconacetobacter diazotrophicus under P-limitation and plant root environment. Agricultural Sciences, 2, 16–22.CrossRefGoogle Scholar
  12. Demissie, S., Muleta, D., & Berecha, G. (2013). Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia faba L.). International Journal of Agricultural Research, 8, 123–136.CrossRefGoogle Scholar
  13. Ganesan, V. (2008). Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Current Microbiology, 56, 403–407.CrossRefGoogle Scholar
  14. Ghoreishi, F., & Etemadifar, Z. (2017). Heavy metal removal by phosphate solubilizing Acinetobacter calcoaceticus isolated from rhizosphere. Journal of Biology, 6, 230–239.Google Scholar
  15. Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., Ansari, A. A., Johri, A. K., Prasad, R., Pereira, E., Varma, A., & Tuteja, N. (2016). Piriformospora indica: Potential and significance in plant stress tolerance. Frontiers in Microbiology, 7(332).  https://doi.org/10.3389/fmicb.2016.00332.
  16. Giuffréde López Carnelo, L., de Miguez, S. R., & Marbán, L. (1997). Heavy metals input with phosphate fertilizers used in Argentina. Science of the Total Environment, 204, 245–250.CrossRefGoogle Scholar
  17. Gupta, A., Rai, V., Bagdwal, N., & Goel, R. (2005). In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads. Microbiological Research, 160, 385–388.CrossRefGoogle Scholar
  18. Gupta, D. K., Chatterjee, S., Datta, S., Veer, V., & Walther, C. (2014). Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere, 108, 134–144.CrossRefGoogle Scholar
  19. Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J., & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245, 83–93.CrossRefGoogle Scholar
  20. Hakim, S. S., Budi, S. W., & Turjaman, M. (2015). Phosphate solubilizing and antifungal activity of root endophyte isolated from Shorea leprosula Miq. and Shoreal selanica (DC) Blume. Jurnal manajemen hutan tropika, 21, 138–146.CrossRefGoogle Scholar
  21. Hayes, J. E., Simpson, R. J., & Richardson, A. E. (2000). The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant and Soil, 220, 165–174.CrossRefGoogle Scholar
  22. Hinsinger, P. (2001). Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In G. R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere (pp. 163–182). United States: CRC Press.Google Scholar
  23. Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., & Borriss, R. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology, 148, 2097–2109.CrossRefGoogle Scholar
  24. Igiehon, N. O., & Babalola, O. O. (2017). Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology, 101, 4871–4881.CrossRefGoogle Scholar
  25. International Fertilizer Association IFA. (2009). The global ‘4R’ nutrient stewardship framework: Developing fertilizer best management practices for delivering economic, social and environmental benefits, Paris, France. http://www.fertilizer.org/ifa/Home-Page/LIBRARY/Publication-database.html/The-Global-4R-Nutrient-Stewardship-Framework-for-Developing-and-Delivering-Fertilizer-Best-Management-Practices.html2
  26. International Plant Nutrient Institute IPNI. (2014). 4R Nutrient stewardship portal. Available at: http://www.ipni.net/4R. Accessed Feb 9 2018
  27. Intorne, A. C., de Oliveira, M. V. V., Lima, M. L., da Silva, J. F., Olivares, F. L., & de Souza Filho, G. A. (2009). Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Archives of Microbiology, 191, 477–483.CrossRefGoogle Scholar
  28. Jahan, M., Nassiri Mahallati, M., Amiri, M. B., & Ehyayi, H. R. (2013). Radiation absorption and use efficiency of sesame as affected by biofertilizers inoculation in a low input cropping system. Industrial Crops and Products, 43, 606–611.CrossRefGoogle Scholar
  29. Jog, R., Pandya, M., Nareshkumar, G., & Rajkumar, S. (2014). Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology, 160, 778–788.CrossRefGoogle Scholar
  30. Johri, A. K., Oelmüller, R., Dua, M., Yadav, V., Kumar, M., Tuteja, N., Varma, A., Bonfante, P., Persson, B. L., & Stroud, R. M. (2015). Fungal association and utilization of phosphate by plants: Success, limitations, and future prospects. Frontiers in Microbiology, 6, 984.CrossRefGoogle Scholar
  31. Kageyama, S. A., Mandyam, K. G., & Jumpponen, A. (2008). Diversity, function and potential applications of the root-associated endophytes. In P. D. A. Varma (Ed.), Mycorrhiza (pp. 29–57). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  32. Keller, A., & Schulin, R. (2003). Modelling heavy metal and phosphorus balances for farming systems. Nutrient Cycling in Agroecosystems, 66, 271–284.CrossRefGoogle Scholar
  33. Kepert, D. G., Robson, A. D., & Posner, A. M. (1979). The effect of organic root products on the availability of phosphorus to plants. In J. L. Harley & R. S. Russell (Eds.), The soil–root interface (pp. 115–124). London: Academic.CrossRefGoogle Scholar
  34. Khan, A., Sharif, M., Ali, A., Shah, S. N. M., Mian, I. A., Fazli Wahid, B. J., Adnan, M., Nawaz, S., & Ali, N. (2014a). Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. American Journal of Plant Sciences, 5, 1578.CrossRefGoogle Scholar
  35. Khan, M. S., Zaidi, A., & Ahmad, E. (2014b). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In Phosphate solubilizing microorganisms (pp. 31–62). Cham: Springer.Google Scholar
  36. Kim, S. J., Eo, J.-K., Lee, E.-H., Park, H., & Eom, A.-H. (2017). Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology, 45, 20–24.CrossRefGoogle Scholar
  37. Kucey, R. M. N. (1983). Phosphate-solubilizing bacteria and fungi in various cultivated and virgin alberta soils. Canadian Journal of Soil Science, 63, 671–678.CrossRefGoogle Scholar
  38. Kumar, K. V., Srivastava, S., Singh, N., & Behl, H. M. (2009). Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. Journal of Hazardous Materials, 170, 51–57.CrossRefGoogle Scholar
  39. Kumar, M., Yadav, V., Kumar, H., Sharma, R., Singh, A., Tuteja, N., & Johri, A. K. (2011). Piriformospora indica enhances plant growth by transferring phosphate. Plant Signaling & Behavior, 6, 723–725.CrossRefGoogle Scholar
  40. Li, K., & Ramakrishna, W. (2011). Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. Journal of Hazardous Materials, 189, 531–539.CrossRefGoogle Scholar
  41. López-López, A., Rogel, M. A., Ormeño-Orrillo, E., Martínez-Romero, J., & Martínez-Romero, E. (2010). Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Systematic and Applied Microbiology, 33, 322–327.CrossRefGoogle Scholar
  42. Ma, Y., Rajkumar, M., & Freitas, H. (2009a). Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere, 75, 719–725.CrossRefGoogle Scholar
  43. Ma, Y., Rajkumar, M., & Freitas, H. (2009b). Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90, 831–837.CrossRefGoogle Scholar
  44. McDowell, R. W., Sharpley, A. N., Condron, L. M., Haygarth, P. M., & Brookes, P. C. (2001). Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutrient Cycling in Agroecosystems, 59, 269–284.CrossRefGoogle Scholar
  45. Misra, N., Gupta, G., & Jha, P. N. (2012). Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. Journal of Basic Microbiology, 52, 549–558.CrossRefGoogle Scholar
  46. Mohamed, H. M., & Almaroai, Y. A. (2017). Effect of phosphate solubilizing bacteria on the uptake of heavy metals by corn plants in a long-term sewage wastewater treated soil. International Journal of Environmental Science and Development, 8, 366.CrossRefGoogle Scholar
  47. Norrish, K., & Rosser, H. (1983). Soils: An Australian viewpoint. Melbourne/London: CSIRO/Academic Mineral phosphate; pp. 335–361.Google Scholar
  48. Otieno, N., Lally, R., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K., & Dowling, D. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745.Google Scholar
  49. Oves, M., Khan, M. S., & Zaidi, A. (2013). Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. European Journal of Soil Biology, 56, 72–83.CrossRefGoogle Scholar
  50. Paul Raj, D., Rhema SB Linda, R., & Babyson, S. (2014). Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soils. International Journal of Transportation Science and Technology, 1, 317–324.Google Scholar
  51. Prasad, R., Pham, G. H., Kumari, R., Singh, A., Yadav, V., Sachdev, M., PeskanT, H. S., Oelmuller, R., Garg, A. P., & Varma, A. (2005). Sebacinaceae: Culturable mycorrhiza–like endosymbiotic fungi and their interaction with non-transformed and transformed roots. In S. Declerck, D. G. Strullu, & J. A. Fortin (Eds.), In vitro culture of Mycorrhizas (Vol. 4, pp. 291–312). Berlin/Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  52. Prasad, R., Bagde, U. S., Pushpangdan, P., & Varma, A. (2008). Bacopa monniera L.: Pharmacological aspects and case study involving Piriformospora indica. International Journal of Integrative Biology, 3, 100–110.Google Scholar
  53. Prasad, R., Kamal, S., Sharma, P. K., Oelmueller, R., & Varma, A. (2013). Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. Journal of Basic Microbiology, 53(12), 1016–1024.CrossRefGoogle Scholar
  54. Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H., & Kim, S. Z. (2006). Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62, 741–748.CrossRefGoogle Scholar
  55. Richardson, A. E. (1994). Soil microorganisms and phosphorus availability. In C. E. Pankhurst, B. M. Doube, G. VVSR, & P. R. Grace (Eds.), Soil biota: Management in sustainable farming systems (pp. 50–62). Melbourne: CSIRO.Google Scholar
  56. Richardson, A. E. (2007). Making microorganisms mobilize soil phosphorus. In First international meeting on microbial phosphate solubilization (pp. 85–90). Dordrecht: Springer.CrossRefGoogle Scholar
  57. Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156, 989–996.CrossRefGoogle Scholar
  58. Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.CrossRefGoogle Scholar
  59. Ruangsanka, S. (2014). Identification of phosphate-solubilizing fungi from the asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum. Science Asia, 40, 16–20.CrossRefGoogle Scholar
  60. Sandip, B., Subrata, P., & Swati, R. G. (2011). Isolation and characterization of plant growth promoting Bacillus Thuringiensis from agricultural soil of West Bengal. Research Journal of Biotechnology, 6, 9–13.Google Scholar
  61. Sato, T., Ezawa, T., Cheng, W., & Tawaraya, K. (2015). Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Science & Plant Nutrition, 61, 269–274.CrossRefGoogle Scholar
  62. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587.CrossRefGoogle Scholar
  63. Sharpley, A. (2016). Managing agricultural phosphorus to minimize water quality impacts. Science in Agriculture, 73, 1–8.Google Scholar
  64. Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156, 997–1005.CrossRefGoogle Scholar
  65. Singh, B., & Satyanarayana, T. (2010). Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Applied Biochemistry and Biotechnology, 160, 1267–1276.CrossRefGoogle Scholar
  66. Singh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17, 93–103.CrossRefGoogle Scholar
  67. Surapat, W., Pukahuta, C., Rattanachaikunsopon, P., Aimi, T., & Boonlue, S. (2013). Characteristics of phosphate solubilization by phosphate-solubilizing bacteria isolated from agricultural chili soil and their efficiency on the growth of chili (Capsicum frutescens L. cv. Hua Rua). Chiang Mai Journal of Science, 40, 11–25.Google Scholar
  68. Swarnalakshmi, K., Prasanna, R., Kumar, A., Pattnaik, S., Chakravarty, K., Shivay, Y. S., Singh, R., & Saxena, A. K. (2013). Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. European Journal of Soil Biology, 55, 107–116.CrossRefGoogle Scholar
  69. Tank, N., & Saraf, M. (2009). Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Journal of Basic Microbiology, 49, 195–204.CrossRefGoogle Scholar
  70. Tate, K. R. (1984). The biological transformation of P in soil. In Biological processes and soil fertility (pp. 245–256). Berlin: Springer.CrossRefGoogle Scholar
  71. Taurian, T., Anzuay, M. S., Ludueña, L. M., Angelini, J. G., Muñoz, V., Valetti, L., & Fabra, A. (2013). Effects of single and co-inoculation with native phosphate solubilising strain Pantoea sp J49 and the symbiotic nitrogen fixing bacterium Bradyrhizobium sp SEMIA 6144 on peanut (Arachis hypogea L.) growth. Symbiosis, 59, 77–85.CrossRefGoogle Scholar
  72. Unno, Y., Okubo, K., Wasaki, J., Shinano, T., & Osaki, M. (2005). Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environmental Microbiology, 7, 396–404.CrossRefGoogle Scholar
  73. Upadhyay, A., & Srivastava, S. (2010). Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian Journal of Experimental Biology, 48, 601–609.Google Scholar
  74. Wang, H.-Y., Liu, S., Zhai, L.-M., Zhang, J.-Z., Ren, T.-Z., Fan, B.-Q., & Liu, H.-B. (2015a). Preparation and utilization of phosphate biofertilizers using agricultural waste. Journal of Integrative Agriculture, 14, 158–167.CrossRefGoogle Scholar
  75. Wang, R., Guo, S., Li, N., Li, R., Zhang, Y., Jiang, J., Wang, Z., Liu, Q., Wu, D., Sun, Q., Du, L., & Zhao, M. (2015b). Phosphorus accumulation and sorption in calcareous soil under long-term fertilization. PLoS One, 10, e0135160.CrossRefGoogle Scholar
  76. Wani, P. A., & Khan, M. S. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48, 3262–3267.CrossRefGoogle Scholar
  77. Xiao, C., Zhang, H., Fang, Y., & Chi, R. (2013). Evaluation for rock phosphate solubilization in fermentation and soil–plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1. Applied Microbiology and Biotechnology, 169, 123–133.Google Scholar
  78. Yadav, R. S., & Tarafdar, J. C. (2003). Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biology and Biochemistry, 35, 745–751.CrossRefGoogle Scholar
  79. Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169, 76–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sagar Chhabra
    • 1
    • 2
  1. 1.MicroGen Biotech Ltd, ERIC CentreInstitute of Technology CarlowCarlowIreland
  2. 2.Department of BiotechnologyInvertis UniversityBareillyIndia

Personalised recommendations