Microbial Potential and Biofuel Production

  • Priyanku Teotia
  • Manoj Kumar
  • Vivek Kumar


Exhaustion of fossil fuel has driven consideration and notion all over the world to ascertain an auxiliary and long-time supportable energy resources and sources of power to fulfil the requirement of human beings. The microbial originated fuels, known as micro-biofuels has immense potential to substantially reduce the transportation fuel crisis. For cost-effective biofuels production, the use of microbes using industrial, agricultural waste and renewable matters will sort out energy crisis, climate change apprehensiveness and food assurance. Quantum of plant biomass on our planet is remarkable and the biomass can be converted by the microbes and their enzymes into renewable energy sources. Currently, on a large scale, the bioethanol is produced in countries like United States of America using corn or other raw materials to meet the requirements of transportation sector. On the contrary, though methane gas is produced on a significant level, it is yet to gain currency for industrial and transportation purposes. As regards the biobutanol, it has huge potential to supplement the existing petroleum products.

Instead of producing bioethanol or biodiesel from microbes, researchers are trying to manufacture advanced microbiofuels, such as long chain isoprenoid, alcohols and fatty acids based fuels from Saccharomyces cerevisiae and Escherichia coli or production of hydrogen using the cyanobacteria. In this chapter, we analyse and discuss the present status of microbial based biofuel production, their constraints and challenges.


Biofuel Biogas Saccharomyces cerevisiae 


  1. Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26(1), 89–105.CrossRefGoogle Scholar
  2. Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273–2282.CrossRefGoogle Scholar
  3. Bokinsky, G., Peralta-Yahya, P. P., George, A., Holmes, B. M., Steen, E. J., Dietrich, J., Lee, T. S., Tullman-Ercek, D., Voigt, C. A., Simmons, B. A., & Keasling, J. D. (2011). Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. PNAS, 108(50), 19949–19954.CrossRefGoogle Scholar
  4. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  5. Claassen, P. A. M., de Vrije, T., & Budde, M. A. W. (2004). Biological hydrogen production from sweet sorghum by thermopilic bacteria. In Proceedings 2nd world conference on biomass for energy (pp 1522–1525), Rome.Google Scholar
  6. Clomburg, J. M., & Gonzalez, R. (2010). Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology, 86, 419–434.CrossRefGoogle Scholar
  7. Das, D., & Verziroglu, T. N. (2001). Hydrogen production by biological processes: A survey of literature. International Journal of Hydrogen Energy, 26, 13–28.CrossRefGoogle Scholar
  8. de Vrije, T., & Claassen, P. A. M. (2003). In J. H. Reith, R. H. Wijffels, & H. Barten (Eds.), Dark hydrogen fermentations (pp. 103–123). Petten: Dutch Biological Hydrogen Foundation.Google Scholar
  9. de Vrije, T., de Haas, G. G., Tan, G. B., Keijsers, E. R. P., & Claassen, P. A. M. (2002). Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. International Journal of Hydrogen Energy, 27, 1381–1390.CrossRefGoogle Scholar
  10. Esper, B., Badura, A., & Rögner, M. (2006). Photosynthesis as a power supply for (bio-) hydrogen production. Trends in Plant Science, 11, 543–549.CrossRefGoogle Scholar
  11. Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92(5), 405–416.CrossRefGoogle Scholar
  12. Gieg, L. M., Duncan, K. E., & Suflita, J. M. (2008). Bioenergy production via microbial conversion of residual oil to natural gas. Applied and Environmental Microbiology, 74(10), 3022–3029.CrossRefGoogle Scholar
  13. Goldemberg, J., Coelho, S. T., & Guardabassi, P. (2008). The sustainability of ethanol production from sugarcane. Energy Policy, 36(6), 2086–2097.CrossRefGoogle Scholar
  14. Grigoryan, A., & Voordouw, G. (2008). Microbiology to help solve our energy needs: Methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle. Annals of the New York Academy of Sciences, 1125, 345–352.CrossRefGoogle Scholar
  15. Hallenbeck, P. C., & Ghosh, D. (2009). Advances in fermentative biohydrogen production: The way forward? Trends in Biotechnology, 27(5), 287–297.CrossRefGoogle Scholar
  16. Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS, 03(30), 11206–11210.CrossRefGoogle Scholar
  17. IEA (International Energy Association). (2012).
  18. Jorgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels Bioproductions Biorefining, 1, 119–134.CrossRefGoogle Scholar
  19. Malhotra, R. (2007). Road to emerging alternatives-biofuels and hydrogen. Journal of Petrotech Society, 4, 34–40.Google Scholar
  20. Metting, F. B., Jr. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology and Biotechnology, 17(5–6), 477–489.CrossRefGoogle Scholar
  21. Singh, B. P., Panigrahi, M. R., & Ray, H. S. (2000). Review of biomass as a source of energy for India. Energy Sources, 22(7), 649–658.CrossRefGoogle Scholar
  22. Spolaore, P., Joannis Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.CrossRefGoogle Scholar
  23. Strapo’c, D., Picardal, F. W., Turich, C., Schaperdoth, I., Macalady, J. L., & Lipp, J. S. (2008). Methane-producing microbial community in a coal bed of the Illinois Basin. Applied and Environmental Microbiology, 74(8), 2424–2432.CrossRefGoogle Scholar
  24. Tollefson, J. (2008). Energy: Not your father’s biofuels. Nature, 451, 880–883.CrossRefGoogle Scholar
  25. Volkwein, J. C., Schoeneman, A. L., Clausen, E. G., Gaddy, J. L., Johnson, E. R., & Basu, R. (1994). Biological production of methane from bituminous coal. Fuel Processing Technology, 40(2–3), 339–345.CrossRefGoogle Scholar
  26. Von Blottnitz, H., & Curran, M. A. (2007). A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. Journal of Cleaner Production, 15(7), 607–619.CrossRefGoogle Scholar
  27. Wu, S. Y., Hung, C. H., Lin, C. N., Chen, H. W., Lee, A. S., & Chang, J. S. (2005). Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone immobilized and self-flocculated sludge. Biotechnology and Bioengineering, 93, 934–946.CrossRefGoogle Scholar
  28. Yadvika, S. S., Sreekrishnan, T. R., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques-a review. Bioresource Technology, 95, 1–10.CrossRefGoogle Scholar
  29. Youssef, N., Simpson, D. R., Duncan, K. E., McInerney, M. J., Folmsbee, M., & Fincher, T. (2007). In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Applied and Environmental Microbiology, 73(4), 1239–1247.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Priyanku Teotia
    • 1
  • Manoj Kumar
    • 2
  • Vivek Kumar
    • 3
  1. 1.Department of BotanyCCS UniversityMeerutIndia
  2. 2.Centre for Life SciencesCentral University of JharkhandRanchiIndia
  3. 3.Himalayan School of BiosciencesSwami Rama Himalayan UniversityDehradunIndia

Personalised recommendations