Advertisement

Clinical Practice Considerations

  • Xueli Chen
  • Yi DaiEmail author
Chapter

Abstract

Glaucoma is a group of eye conditions which result in characteristic damage to the optic nerve. The pathogenesis and management of primary angle closure glaucoma are different from that of primary open-angle glaucoma. The main types of secondary glaucoma and their underlying causes, treatment principles, and medication options are discussed in this chapter. Treatment of secondary glaucoma should be directed at blocking the underlying disease process and lowering the IOP. Glaucoma therapy related ocular surface disease and drug tolerance are important issues that need more attention. Medical management of the children or pregnant with glaucoma is challenging with respect to balancing disease progression while minimizing systemic risks. Both ophthalmologists and health care providers should be aware of the necessity of careful monitoring and avoiding the potentially dangerous side effects of anti-glaucoma medications.

Keywords

Primary angle closure glaucoma Secondary glaucoma Drug tolerance Ocular surface disease Pregnancy Breast-feeding 

References

  1. 1.
    Sun X, Dai Y, Chen Y, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45.CrossRefGoogle Scholar
  2. 2.
    Pape LG, Forbes M. Retinal detachment and miotic therapy. Am J Ophthalmol. 1978;85:558e566.CrossRefGoogle Scholar
  3. 3.
    Stocker FW. Experimental studies on the blood-aqueous barrier; electrophotometric measurements of fluorescein content of aqueous after intravenous injection of fluorescein, the eye being under the influence of physostigmine, pilocarpine, neostigmine or atropine. Arch Ophthalmol. 1947;37:583e5.CrossRefGoogle Scholar
  4. 4.
    Aung T, Wong HT, Yip CC, Leong JY, Chan YH, Chew PT. Comparison of the intraocular pressure-lowering effect of Latanoprost and timolol in patients with chronic angle closure glaucoma: a preliminary study. Ophthalmology. 2000;107:1178–83.CrossRefGoogle Scholar
  5. 5.
    Razeghinejad R, Katz L. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 2012;47:66–80.CrossRefGoogle Scholar
  6. 6.
    Fini ME, Schwartz SG, Gao X, et al. Steroid-induced ocular hypertension/glaucoma: focus on pharmacogenomics and implications for precision medicine. Prog Retin Eye Res. 2017;56:58–83.CrossRefGoogle Scholar
  7. 7.
    Scherer WJ, Hauber FA. Effect of latanoprost on intraocular pressure in steroid-induced glaucoma. J Glaucoma. 2000;9(2):179–82.CrossRefGoogle Scholar
  8. 8.
    Sng CC, Ang M, Barton K. Uveitis and glaucoma: new insights in the pathogenesis and treatment. Prog Brain Res. 2015;221:243–69.CrossRefGoogle Scholar
  9. 9.
    Van Gelder RN. Idiopathic no more: clues to the pathogenesis of Fuchs heterochromic iridocyclitis and glaucomatocyclitic crisis. Am J Ophthalmol. 2008;145(5):769–71.CrossRefGoogle Scholar
  10. 10.
    Su C, Hu F, Wang T, et al. Clinical outcomes in cytomegalovirus-positive Posner-Schlossman syndrome patients treated with topical ganciclovir therapy. Am J Ophthalmol. 2014;158:1024–31.CrossRefGoogle Scholar
  11. 11.
    Bojikian KD, Stein AL, Slabaugh MA, et al. Incidence and risk factors for traumatic intraocular pressure elevation and traumatic glaucoma after open-globe injury. Eye. 2015;29:1579–84.CrossRefGoogle Scholar
  12. 12.
    Ng DS, Ching RH, Chan CW. Angle-recession glaucoma: long-term clinical outcomes over a 10-year period in traumatic microhyphema. Int Ophthalmol. 2015;35:107–13.CrossRefGoogle Scholar
  13. 13.
    Sihota R, Kumar S, Gupta V, et al. Early predictors of traumatic glaucoma after closed globe injury: trabecular pigmentation, widened angle recess, and higher baseline intraocular pressure. Arch Ophthalmol. 2008;126:921–6.CrossRefGoogle Scholar
  14. 14.
    Turalba AV, Shah AS, Andreoli MT, et al. Predictors and outcomes of ocular hypertension after open-globe injury. J Glaucoma. 2014;23:5–10.CrossRefGoogle Scholar
  15. 15.
    Bleiman BS, Schwartz A. Paradoxical intraocular pressure response to pilocarpine: a proposed mechanism and treatment. Arch Ophthalmol. 1979;97:1305.CrossRefGoogle Scholar
  16. 16.
    Brown GC, Magargal LE, Schachat A, et al. Neovascular glaucoma: etiologic considerations. Ophthalmology. 1984;91:315.CrossRefGoogle Scholar
  17. 17.
    Ehlers JP, Spirn MJ, Lam A, et al. Combination intravitreal bevacizumab/panretinal photocoagulation versus panretinal photocoagulation alone in the treatment of neovascular glaucoma. Retina. 2008;28:696–702.CrossRefGoogle Scholar
  18. 18.
    Yazdani S, Hendi K, Pakravan M, et al. Intravitreal bevacizumab for neovascular glaucoma: a randomized controlled trial. J Glaucoma. 2009;18:632–7.CrossRefGoogle Scholar
  19. 19.
    Wolf A, von Jagow B, Ulbig M, Haritoglou C. Intracameral injection of bevacizumab for the treatment of neovascular glaucoma. Ophthalmologica. 2011;226:51–6.CrossRefGoogle Scholar
  20. 20.
    Ha JY, Lee TH, Sung MS, Park SW. Efficacy and safety of intracameral bevacizumab for treatment of neovascular glaucoma. Korean J Ophthalmol. 2017;31(6):538–47.CrossRefGoogle Scholar
  21. 21.
    Allingham R, et al. Pigmentary glaucomas and other glaucomas associated with disorders of the iris and ciliary body. In: Shield’s textbook of glaucoma. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 303–17.Google Scholar
  22. 22.
    Michelessi M, Lindsley K. Peripheral iridotomy for pigmentary glaucoma. Cochrane Database Syst Rev. 2016;2:CD005655.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Anderson MG, Smith RS, Hawes NL, et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet. 2002;30:81–5.CrossRefGoogle Scholar
  24. 24.
    Haynes WL, Johnson AT, Alward WL. Inhibition of exercise-induced pigment dispersion in a patient with the pigmentary dispersion syndrome. Am J Ophthalmol. 1990;109(5):601–2.CrossRefGoogle Scholar
  25. 25.
    Tarkkanen A. Exfoliation syndrome: a historical perspective. J Glaucoma. 2018;27:S1–3.CrossRefGoogle Scholar
  26. 26.
    Miglior S, Bertuzzi F. Exfoliative glaucoma: new evidence in the pathogenesis and treatment. Prog Brain Res. 2015;221:233–41.CrossRefGoogle Scholar
  27. 27.
    Schlötzer-Schrehardt U, Hammer CM, Krysta AW, et al. LOXL1 deficiency in the lamina cribrosa as candidate susceptibility factor for a pseudoexfoliation-specific risk of glaucoma. Ophthalmology. 2012;119(9):1832–43.CrossRefGoogle Scholar
  28. 28.
    Schlötzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 2006;141:921–37.CrossRefGoogle Scholar
  29. 29.
    Michalik A, Kaufman P. Medical management of glaucoma in exfoliation syndrome. J Glaucoma. 2018;27:S87–90.CrossRefGoogle Scholar
  30. 30.
    Foreman-Larkin J, Netland PA, Salim S. Clinical management of malignant glaucoma. J Ophthalmol. 2015;2015:283707.CrossRefGoogle Scholar
  31. 31.
    Simmons J. Malignant glaucoma. Br J Ophthalmol. 1972;56:263–72.CrossRefGoogle Scholar
  32. 32.
    Ruben S, Tsai J, Hitchings R. Malignant glaucoma and its management. Br J Ophthalmol. 1997;81:163–7.CrossRefGoogle Scholar
  33. 33.
    Boger WP. Short-term “escape” and long-term “drift”. The dissipation effects of the beta adrenergic blocking agents. Surv Ophthalmol. 1983;28(Suppl):235–42.CrossRefGoogle Scholar
  34. 34.
    Gandolfi SA. Restoring sensitivity to timolol after long-term drift in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1990;31:354–8.PubMedGoogle Scholar
  35. 35.
    Bron AM, Denis P, Nordmann JP, et al. Additive IOP-reducing effect of latanoprost in patients insufficiently controlled on timolol. Acta Ophthalmol Scand. 2001;79(3):289–93.CrossRefGoogle Scholar
  36. 36.
    Germano RA, Susanna R, De Moraes CG, et al. Effect of switching from latanoprost to bimatoprost in primary open-angle glaucoma patients who experienced intraocular pressure elevation during treatment. J Glaucoma. 2016;25(4):e359–66.CrossRefGoogle Scholar
  37. 37.
    Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in glaucoma patients. J Glaucoma. 2008;17(5):350–5.CrossRefGoogle Scholar
  38. 38.
    Stewart WC, Stewart JA, Nelson LA. Ocular surface disease in patients with ocular hypertension and glaucoma. Curr Eye Res. 2011;36(5):391–8.CrossRefGoogle Scholar
  39. 39.
    Holló G, Katsanos A, Boboridis KG, Irkec M, Konstas AGP. Preservative-free prostaglandin analogs and prostaglandin/timolol fixed combinations in the treatment of glaucoma: efficacy, safety and potential advantages. Drugs. 2017;78(1):39–64.  https://doi.org/10.1007/s40265-017-0843-9.CrossRefGoogle Scholar
  40. 40.
    Ammar DA, Noecker RJ, Kahook MY. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells. Adv Ther. 2010;27:837–45.CrossRefGoogle Scholar
  41. 41.
    Rouland J-F, Traverso CE, Stalmans I, Fekih LE, Delval L, Renault D, et al. Efficacy and safety of preservative-free latanoprost eyed drops, compared with BAK-preserved latanoprost in patients with ocular hypertension or glaucoma. Br J Ophthalmol. 2013;97:196–200.CrossRefGoogle Scholar
  42. 42.
    Shedden A, Adamsons IA, Getson AJ, Laurence JK, Lines CR, Hewitt DJ, Ho TW. Comparison of the efficacy and tolerability of preservative-free and preservative-containing formulations of the dorzolamide/timolol fixed combination (COSOPTTM) in patients with elevated intraocular pressure in a randomized clinical trial. Graefes Arch Clin Exp Ophthalmol. 2010;248:1757–64.CrossRefGoogle Scholar
  43. 43.
    Batra R, Tailor R, Mohamed S. Ocular surface disease exacerbated glaucoma: optimizing the ocular surface improves intraocular pressure control. J Glaucoma. 2014;23(1):56–60.CrossRefGoogle Scholar
  44. 44.
    Meda R, Wang Q, Paoloni D, et al. The impact of chronic use of prostaglandin analogues on the biomechanical properties of the cornea in patients with primary open-angle glaucoma. Br J Ophthalmol. 2017;101:120–5.CrossRefGoogle Scholar
  45. 45.
    Wu N, Chen Y, Yu X, Li M, Wen W, Sun X. Changes in corneal biomechanical properties after long-term topical prostaglandin therapy. PLoS One. 2016;11:e0155527.CrossRefGoogle Scholar
  46. 46.
    Whitson JT, Roarty JD, Vijayal L, et al. Efficacy of brinzolamide and levobetaxolol in pediatric glaucomas: a randomized clinical trial. J AAPOS. 2008;12:239–46 e3.CrossRefGoogle Scholar
  47. 47.
    Futagi Y, Otani K, Abe J. Growth suppression in children receiving acetazolamide with antiepileptic drugs. Pediatr Neurol. 1996;15:323–6.CrossRefGoogle Scholar
  48. 48.
    Passo MS, Palmer EA, Van Buskirk EM. Plasma timolol in glaucoma patients. Ophthalmology. 1984;91:1361–3.CrossRefGoogle Scholar
  49. 49.
    Enyedi LB, Freedman SF. Latanoprost for the treatment of pediatric glaucoma. Surv Ophthalmol. 2002;47(Suppl1):S129–32.CrossRefGoogle Scholar
  50. 50.
    Enyedi L, Freedman S. Safety and efficacy of brimonidine in children with glaucoma. J AAPOS. 2001;5:281.CrossRefGoogle Scholar
  51. 51.
    Salim S. Glaucoma in pregnancy. Curr Opin Ophthalmol. 2014;25:93–7.CrossRefGoogle Scholar
  52. 52.
    Razeghinejad MR, Tania Tai TY, Fudemberg SJ, Katz LJ. Pregnancy and glaucoma. Surv Ophthalmol. 2011;56:324–35.CrossRefGoogle Scholar
  53. 53.
    European Glaucoma Society. Terminology and guidelines for glaucoma. 4th ed. Mainz: European Glaucoma Society; 2014.Google Scholar
  54. 54.
    American Academy of Ophthalmology. Preferred practice pattern. 3rd ed. San Francisco: American Academy of Ophthalmology; 2015.Google Scholar
  55. 55.
    McMahon CD, Shaffer RN, Hoskins HD, Hetherington J. Adverse effects experienced by patients taking timolol. Am J Ophthalmol. 1979;88:736–8.CrossRefGoogle Scholar
  56. 56.
    Schweitzer I, Maguire K, Tuckwell V. Antiglaucoma medication and clinical depression. Aust N Z J Psychiatry. 2001;35:569–71.CrossRefGoogle Scholar
  57. 57.
    Bright R, Everitt D. Beta-blockers and depression. Evidence against an association. JAMA. 1992;267(13):1783–7.CrossRefGoogle Scholar
  58. 58.
    Lachkar Y, Bouassida W. Drug-induced acute angle closure glaucoma. Curr Opin Ophthalmol. 2007;18:129–33.CrossRefGoogle Scholar
  59. 59.
    Kadoi C, Hayasaka S, Tsukamoto E, et al. Bilateral angle closure glaucoma and visual loss precipitated by antidepressant and antianxiety agents in a patient with depression. Ophthalmologica. 2000;214(5):360–1.CrossRefGoogle Scholar
  60. 60.
    Yochim BP, Mueller AE, Kane KD, et al. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma. 2012;21:250–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual ScienceEye and ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
  2. 2.NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical SciencesShanghaiChina
  3. 3.Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University)ShanghaiChina

Personalised recommendations