Combined Use of Pharmaceutical Agents

  • Junyi Chen
  • Xinghuai SunEmail author


A combination of anti-glaucoma drugs is often required to achieve the target intraocular pressure when treating glaucoma. The efficacy and safety of combining these drugs are discussed in the first part of this chapter. Since patients with glaucoma also often suffer from systemic illnesses, such as hypertension, cardiovascular disease, and respiratory diseases, we also discuss the potential problems associated with glaucoma medications and systemic therapies for these conditions in this chapter. Elevated intraocular pressure or glaucoma can occur following many ophthalmic therapeutic procedures. How to identify and treat this type of glaucoma is discussed. Finally, combined uses of systemic and topical agents to control higher IOP are briefly discussed at the end of the chapter.


Anti-glaucoma drugs Combined use Systemic disease Triamcinolone acetonide Dexamethasone intravitreal implant Systemic agents 


  1. 1.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13.CrossRefGoogle Scholar
  2. 2.
    Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the collaborative initial glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108(11):1943–53.CrossRefGoogle Scholar
  3. 3.
    Bucci MG. Intraocular pressure-lowering effects of latanoprost monotherapy versus latanoprost or pilocarpine in combination with timolol: a randomized, observer-masked multicenter study in patients with open-angle glaucoma. Italian Latanoprost Study Group. J Glaucoma. 1999;8(1):24–30.CrossRefGoogle Scholar
  4. 4.
    Manni G, Centofanti M, Parravano M, et al. A 6-month randomized clinical trial of bimatoprost 0.03% versus the association of timolol 0.5% and latanoprost 0.005% in glaucomatous patients. Graefes Arch Clin Exp Ophthalmol. 2004;242(9):767–70.CrossRefGoogle Scholar
  5. 5.
    Higginbotham EJ, Feldman R, Stiles M, et al. Latanoprost and timolol combination therapy vs. monotherapy: one-year randomized trial. Arch Ophthalmol. 2002;120(7):915–22.CrossRefGoogle Scholar
  6. 6.
    Lee DA, Gornbein JA. Effectiveness and safety of brimonidine as adjunctive therapy for patients with elevated intraocular pressure in a large, open-label community trial. J Glaucoma. 2001;10(3):220–6.CrossRefGoogle Scholar
  7. 7.
    Erdogan H, Toker I, Arici MK, et al. A short-term study of the additive effect of latanoprost 0.005% and brimonidine 0.2%. Jpn J Ophthalmol. 2003;47(5):473–8.CrossRefGoogle Scholar
  8. 8.
    Mundorf T, Noecker RJ, Earl M. Ocular hypotensive efficacy of brimonidine 0.15% as adjunctive therapy with latanoprost 0.005% in patients with open-angle glaucoma or ocular hypertension. Adv Ther. 2007;24:302–9.CrossRefGoogle Scholar
  9. 9.
    Arici MK, Topalkara A, Guler C. Additive effect of latanoprost and dorzolamide in patients with elevated intraocular pressure. Int Ophthalmol. 1998;22(1):37–42.CrossRefGoogle Scholar
  10. 10.
    Chiselita D, Apatachioae I, Poiata I. The ocular hypotensive effect of the combination of latanoprost with dorzolamide. Oftalmologia. 1999;46(4):39–45.PubMedGoogle Scholar
  11. 11.
    Franks W, Brinzolamide Study Group. Ocular hypotensive efficacy and safety of brinzolamide ophthalmic suspension 1% added to travoprost ophthalmic solution 0.004% therapy in patients with open-angle glaucoma or ocular hypertension. Curr Med Res Opin. 2006;22(9):1643–9.CrossRefGoogle Scholar
  12. 12.
    Shoji N, Ogata H, Suyama H, et al. Intraocular pressure lowering effect of brinzolamide 1.0% as adjunctive therapy to latanoprost 0.005% in patients with open-angle glaucoma or ocular hypertension: an uncontrolled, open-label study. Curr Med Res Opin. 2005;21(4):503–8.CrossRefGoogle Scholar
  13. 13.
    Nakamoto K, Yasuda N. Effect of concomitant use of latanoprost and brinzolamide on 24-hour variation of IOP in normal-tension glaucoma. J Glaucoma. 2007;16(4):352–7.CrossRefGoogle Scholar
  14. 14.
    Langman MJ, Lancashire RJ, Cheng KK, et al. Systemic hypertension and glaucoma: mechanisms in common and co-occurrence. Br J Ophthalmol. 2005;89(8):960–3.CrossRefGoogle Scholar
  15. 15.
    Khawaja AP, Chan MP, Broadway DC, et al. Systemic medication and intraocular pressure in a British population: the EPIC-Norfolk Eye Study. Ophthalmology. 2014;121(8):1501–7.CrossRefGoogle Scholar
  16. 16.
    Deokule S, Weinreb RN. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol. 2008;43(3):302–7.CrossRefGoogle Scholar
  17. 17.
    Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–21.CrossRefGoogle Scholar
  18. 18.
    Hayreh SS, Zimmerman MB, Podhajsky P, et al. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603–24.CrossRefGoogle Scholar
  19. 19.
    Muskens RP, de Voogd S, Wolfs RC, et al. Systemic antihypertensive medication and incident open-angle glaucoma. Ophthalmology. 2007;114(12):2221–6.CrossRefGoogle Scholar
  20. 20.
    Salpeter SR, Ormiston TM, Salpeter EE, et al. Cardioselective beta-blockers for chronic obstructive pulmonary disease: a meta-analysis. Respir Med. 2003;97(10):1094–101.CrossRefGoogle Scholar
  21. 21.
    Salpeter SR, Ormiston TM, Salpeter EE. Cardioselective beta-blockers in patients with reactive airway disease: a meta-analysis. Ann Intern Med. 2002;137(9):715–25.CrossRefGoogle Scholar
  22. 22.
    Kaiserman I, Kaiserman N, Elhayany A, et al. Topical beta-blockers are not associated with an increased risk of treatment for depression. Ophthalmology. 2006;113(7):1077–80.CrossRefGoogle Scholar
  23. 23.
    Honavar SG, Goyal M, Majji AB, et al. Glaucoma after pars plana vitrectomy and silicone oil injection for complicated retinal detachments. Ophthalmology. 1999;106(1):169–76. discussion 177.CrossRefGoogle Scholar
  24. 24.
    Hines MW, Jost BF, Fogelman KL. Oculab Tono-Pen, Goldmann applanation tonometry, and pneumatic tonometry for intraocular pressure assessment in gas-filled eyes. Am J Ophthalmol. 1988;106(2):174–9.CrossRefGoogle Scholar
  25. 25.
    Stjernschantz JW. From PGF(2alpha)-isopropyl ester to latanoprost: a review of the development of xalatan: the Proctor Lecture. Invest Ophthalmol Vis Sci. 2001;42(6):1134–45.PubMedGoogle Scholar
  26. 26.
    Schumer RA, Camras CB, Mandahl AK. Latanoprost and cystoid macular edema: is there a causal relation? Curr Opin Ophthalmol. 2000;11(2):94–100.CrossRefGoogle Scholar
  27. 27.
    Karesh JW, Nirankari VS. Factors associated with glaucoma after penetrating keratoplasty. Am J Ophthalmol. 1983;96(2):160–4.CrossRefGoogle Scholar
  28. 28.
    Foulks GN. Glaucoma associated with penetrating keratoplasty. Ophthalmology. 1987;94(7):871–4.CrossRefGoogle Scholar
  29. 29.
    Goldberg DB, Schanzlin DJ, Brown SI. Incidence of increased intraocular pressure after keratoplasty. Am J Ophthalmol. 1981;92(3):372–7.CrossRefGoogle Scholar
  30. 30.
    Zimmerman TJ, Krupin T, Grodzki W, et al. The effect of suture depth on outflow facility in penetrating keratoplasty. Arch Ophthalmol. 1978;96(3):505–6.CrossRefGoogle Scholar
  31. 31.
    Olson RJ, Kaufman HE. A mathematical description of causative factors and prevention of elevated intraocular pressure after keratoplasty. Invest Ophthalmol Vis Sci. 1977;16(12):1085–92.PubMedGoogle Scholar
  32. 32.
    Polack FM. Graft rejection and glaucoma. Am J Ophthalmol. 1986;101(3):294–7.CrossRefGoogle Scholar
  33. 33.
    Olson RJ, Kaufman HE, Zimmerman TJ. Effects of timolol and Daranide on elevated intraocular pressure after aphakic keratoplasty. Ann Ophthalmol. 1979;11(12):1833–6.PubMedGoogle Scholar
  34. 34.
    Vasconcelos-Santos DV, Nehemy PG, Schachat AP, et al. Secondary ocular hypertension after intravitreal injection of 4 mg of triamcinolone acetonide: incidence and risk factors. Retina. 2008;28(4):573–80.CrossRefGoogle Scholar
  35. 35.
    Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14.CrossRefGoogle Scholar
  36. 36.
    Inatani M, Iwao K, Kawaji T, et al. Intraocular pressure elevation after injection of triamcinolone acetonide: a multicenter retrospective case-control study. Am J Ophthalmol. 2008;145(4):676–81.CrossRefGoogle Scholar
  37. 37.
    Galor A, Margolis R, Brasil OM, et al. Adverse events after intravitreal triamcinolone in patients with and without uveitis. Ophthalmology. 2007;114(10):1912–8.CrossRefGoogle Scholar
  38. 38.
    Francois J. The importance of the mucopolysaccharides in intraocular pressure regulation. Investig Ophthalmol. 1975;14(3):173–6.Google Scholar
  39. 39.
    Scherer WJ, Hauber FA. Effect of latanoprost on intraocular pressure in steroid-induced glaucoma. J Glaucoma. 2000;9(2):179–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology & Visual ScienceEye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
  2. 2.NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical SciencesShanghaiChina
  3. 3.Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University)ShanghaiChina
  4. 4.State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan UniversityShanghaiChina

Personalised recommendations